• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.032 seconds

LP Compressor Blade Vibration Characteristics at Starting Conditions of a 100 MW Heavy-duty Gas Turbine

  • Lee, An-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.895-903
    • /
    • 2004
  • In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions.

Dynamic Deformation Characteristics of Fiber Reinforced Soils Using Resonant Column Tests (공진주 시험을 이용한 섬유보강토의 동적변형특성)

  • Chang, Pyoung-Wuck;Heo, Joon;Park, Young-Kon;Cha, Kyung-Seob;Woo, Chull-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.349-352
    • /
    • 2002
  • In this paper, dynamic properties of fiber reinforced soils were investigated at shearing strains between $10^{-4}%\;and\;10^{-1}%$ using resonant column test. Resonant column test has been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in term of shear modulus and material damping. At strains above elastic threshold, the variations of shear modulus(G) and damping ratio(D) were investigated. Based on test results, the small strain shear modulus($G_{max}$) and damping ratio($D_{min}$) were determined and the effects of confinement on $G_{max}$ and $D_{min}$ were characterized.

  • PDF

Fatigue experiments on steel cold-formed panels under a dynamic load protocol

  • Garcia-Palencia, Antonio J.;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.387-402
    • /
    • 2013
  • A dynamic load protocol has been used to experimentally simulate fatigue behavior in cold-formed metal panels with screwed connections under wind loading. The specific protocol adopted is an adaptation of SIDGERS, originally developed for non-metallic membranes, which is composed of levels each under increasing load values. A total of 19 tests were performed on 3.35 m long by 0.91 m wide panels, identified as Type B-wide rib and Type E, both with screw connections at the edge and at the center, thus conforming two-span specimens. In some configurations the panels were fixed at the valleys, whereas crest-fixed connections were also investigated. Reinforcing the connections by means of washers was also investigated to evaluate their efficiency in improving fatigue capacity. The experimental results show maximum load capacities in improved connections with washers of approximately twice of those with classical connections.

Theoretically-based and practice-oriented formulations for the floor spectra evaluation

  • Abbati, Stefania Degli;Cattari, Serena;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.565-581
    • /
    • 2018
  • This paper proposes a new analytical formulation for computing the seismic input at various levels of a structure in terms of floor response spectra. The approach, which neglects the dynamic interaction between primary structure and secondary element, is particularly useful for the seismic assessment of secondary and non-structural elements. The proposed formulation has a robust theoretical basis and it is based on few meaningful dynamic parameters of the main building. The method has been validated in the linear and nonlinear behavior of the main building through results coming from both experimental tests (available in literature) and parametric numerical analyses. The conditions, for which the Floor Spectrum Approach and its simplified assumptions are valid, have been derived in terms of specific interval ratios between the mass of the secondary element and the participant mass of the main structure. Finally, a practice-oriented formulation has been derived, which could be easily implementable also at code level.

Wear analysis of arc-type wheel profiles to reduce severe wheel flange wear (직립마모 저감을 위한 원호형 차륜답면형상안 마모특성 분석)

  • Hur Hyun-Moo;Kwon Sung-Tae;Seo Jung-Won;Lee Chan-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.720-725
    • /
    • 2004
  • We proposed new arc-type wheel profiles to improve severe flange wear of conventional wheel profile coned 1:40. We designed many candidate wheel profiles and analyzed the geometric characteristics, dynamic performance and stress at contact points to draw out the final profiles. From the analysis result, we chose two cases of profiles and applied to wheels of test train. Tests carried out in service line to analyze the dynamic performance and verify the wear reduction for two cases of profiles. Test results shows the equal level of dynamic performance and the improvement of wheel flange wear compared with the conventional wheel profile.

  • PDF

The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation (스테인레스 304의 열간동적재결정과 미세조직 예측)

  • Kwon Y. P.;Cho J. R.;Lee S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.25-28
    • /
    • 2000
  • The flow stress of 304 stainless steel during high during hot forming process were determined by conducting hot compression tests at the range of 1273 K-1423 K and 0.05 /s-2.0 /s as these are typical temperature and strain rate in hot forging operation. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. Dynamic recrystallization was found to be the major softening mechanism with this conditions as previous studies. A finite element analysis was performed to predict the recrystallized volume fraction and the mean grain size in hot compression of 304 stainless steel.

  • PDF

Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell (원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화)

  • 이창훈;우호길;구경회;이재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF

Optimum forming design of A350 LF2 alloy using the deformation processing map (변형 공정지도를 활용한 A350 LF2 합금의 최적성형 조건설계에 대한 연구)

  • Jung, E.J.;Yeom, J.T.;Kim, J.H.;Lee, D.G.;Pak, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.168-171
    • /
    • 2006
  • Hot deformation behavior of A350 LF2 alloy was characterized by compression tests in the temperature range of 800-$1250^{\circ}C$ and the strain rate range of $0.001-10s^{-1}$. The microstructural evolution during hot compression was investigated and deformation mechanisms were analyzed by constructing processing map. Processing maps were generated using the dynamic material model (DMM). The combination of dynamic material model and Ziegler's instability criterion was applied to predict an optimum condition and unstable regions for hot forming.

  • PDF

Pseudo-Dynamic Tests on Base-Isolated Liquid Storage Tanks (기초분리(基礎分離)된 액체저장(液體貯藏)탱크의 유사(類似) 동적실험(動的實驗))

  • Kim, Nam Sik;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.51-64
    • /
    • 1993
  • Base-isolated liquid storage tanks under seismic loading were tested by the Pseudo-dynamic test method. Substructuring technique in which a mixed integration method was adopted and the liquid tanks were simply modeled as a discrete system. This study gave experimental verification on the advantage of mounting the liquid tanks on base isolators in order to reduce the hydrodynamic forces on the tank wall.

  • PDF

Development of A Omni-directional Flying Robot (전방향 소형비행로봇의 개발)

  • 이호길;원대희;박윤수;양광웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.302-305
    • /
    • 2003
  • In this paper, dynamic behaviors of a small-sized flying robot with 4 rotors propelled by DC motor are discussed, and a control scheme based on the dynamic model to make stable flying motions, i.e., hovering, take-off, cruising behavior, etc. is proposed. The experimental results via some flying tests show good performances for practical use. The flying robot with 6DOF is controlled only 4 DOF, and the rest of two DOF are remained under the dynamic constraints. How to give the stability of all positions and orientations and to make the omni-directional motions in spite of such restrictions is analyzed. The proposed control scheme composes of two stages. First, PD control inputs for the trust-force and orientation are calculated, next the control inputs are distributed to each rotor by using a sort of Jacobian matrix. To design and control of a low cost - small sized flying robot, vibrated gyro sensor, cheap accelerometer, IR, and ultra sonic sensors are selected.

  • PDF