• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.035 seconds

Deformational Characteristics of Dry Sand Using Resonant Column / Torsional Shear Testing Equipment (공진주/비틂 전단(RC/TS)시험기를 이용한 건조 사질토의 변형특성)

  • 김동수
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.101-112
    • /
    • 1995
  • Deformational characteristics of soils, often expressed in terms of shear modulus and material damping ratios, are important parameters in the design of soil-structure systems subjected to cyclic and dynamic loadings. In this paper, deformational characteristics of dry sand at small to intermediate strains were investigated using resonant column/torsional shear(RC 175) apparatus. Both resonant column(dynamic) and torsional shear (cyclic) tests were performed in a sequential series on the same specimen. With the modification of motion monitoring system, the elastic zone, where the stress strain relationship is independent of loading cycles and strain amplitude, was veri tied and hysteretic damping was found even in this zone. At strains above cyclic threshold, shear modulus increases and damping ratio decreases with increasing number of loading cycles. Moduli and damping ratios of dry sand are independent of loading frequency and values obtained from pseudostatic torsional shear tests are Identical with the values from the dynamic resonant column test, provided the effect of number of loading cycles is considered in the conlparison. Therefore, deformational characteristics determined by RC/TS tests may be applied in both dynamic and static analyses of soil-structure systems.

  • PDF

Liquefaction Strength of Silty Sand through Dynamic Triaxial Tests (진동삼축시험을 통한 실트질 모래의 액상화 강도에 대한 연구)

  • Park, Jong-Gwan;Kim, Sang-Gyu;Han, Seong-Gil
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.59-70
    • /
    • 1998
  • Samples of silty sands and hydraulic fill ground were investigated by dynamic triaxial teats in order to evaluate the liquefaction strengths. In the tests, (1) undisturbed and disturbed samples were prepared, (2) dynamic shear strengths were measured under isotropic and anisotropic condition, and (3) the test results were compared with the other results which were tested by domestic and foreign researchers. The liquefaction shear strengths under ismtropic test condition were presented in terms of the relative densities. The amount of silt under 30o hardly influenced on the liquefaction strength. In the test results of anisotropically consolidated samples the liquefaction strength was dependent on the magnitude of the effective consolidation ratio. These teat results show that the liquefaction strength of the silty sand in Korea went coast exists within the boundary of the values suggested by Seed and Peacock(1971).

  • PDF

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.

Response Analysis of PSC-I Girder Bridges for Vehicle's Velocity (재하차량 속도에 따른 PSC-I 거더 교량의 거동분석)

  • Park, Moon-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • The response of a bridge can be influenced by span length, bridge's surface condition, vehicle's weight, and vehicle's velocity. It is difficult to predict accurate behavior of a bridge. In the current standard of specifications, such dynamic effect is defined by impact factor and prescribed to consider live load as to increase design load by means of multiplying this value by live load. However, it is not well understood because the Impact factor method differs from every country. Dynamic, static and pseudo-staitic field loading tests on PSC-I girder bridges were carried out to find out the dynamic property of the bridge. This paper is aimed to figure out actual dynamic property of the bridge by using field loading test. An empirical method based on impact factor is widely used and also argued. Displacement and strain response measured from the tests was compared with one from the empirical method. The former seems to be reasonable since it can consider actual response of a bridge through field tests.

Evaluation of interface shear strength between geosynthetics using three kinds of testing methods (다양한 시험법에 의한 토목섬유 사이의 접촉 전단 강도 평가)

  • Seo, Min-Woo;Park, Jun-Boum;Park, Inn-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.356-363
    • /
    • 2004
  • In this research, the shear behavior of four different interfaces consisting of 4 types of geosynthetics was examined, and both static and dynamic tests for the geosynthetic interface were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board tests were compared with those calculated from large direct shear tests. The comparison results indicated that direct shear tests are likely to overestimate the shear strength in low normal stress range where direct shear tests were not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table tests, it was found that the friction angle might be different depending on the test method and normal stresses applied in this research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field.

  • PDF

On the Large Eddy Simulation of Temperature Field Using Dynamic Mixed Model in a Turbulent Channel (동적혼성 모델을 이용한 난류채널의 온도장 해석)

  • Lee Gunho;Na Yang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1255-1263
    • /
    • 2004
  • An a priori test has been conducted for the dynamic mixed model which was generalized for the prediction of passive scalar field in a turbulent channel flow The results from a priori tests indicated that dynamic mixed model is capable of predicting both subgrid-scale heat flux and dissipation rather accurately. The success is attributed to the explicitly calculated resolved term incorporated into the model. The actual test of the model in a LES a posteriori showed that dynamic mixed model is superior to the widely used dynamic Smagorinsky model in the prediction of temperature statistics.

Experimental Review on Dynamic Characteristics of the Commercial Mounts for Vibration Reduction (상업용 방진마운트의 동적 특성에 관한 실험적 고찰)

  • Moon, Seok-Jun;Shin, Y.H.;Chung, J.H.;Song, C.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.687-694
    • /
    • 2014
  • The mount suppliers are providing limited information on the dynamic characteristics of the mounts to some designers and some manufacturers of the high-precision machines. In this technical study, the experimental review was carried out about dynamic characteristics of five kinds of commercial passive mounts sold in the market. The dynamic characteristics, natural frequency and damping ratio, extracted from experimental tests were compared to the materials supplied by mount makers. In order to predict the performance of the high-precision machines with mounts, exact values of the dynamic characteristics of mounts should be used in the stage of numerical analysis.

A study on dynamic modulus of self-consolidating rubberized concrete

  • Emiroglu, Mehmet;Yildiz, Servet;Kelestemur, M. Halidun
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.795-805
    • /
    • 2015
  • In this study, dynamic modulus of elasticity of self-consolidating rubberized concrete is evaluated by using results of ultrasonic pulse velocity and resonance frequency tests. Additionally, correlation between dynamic modulus of elasticity and compressive strength results is compared. For evaluating the dynamic modulus of elasticity of self-consolidating rubberized concrete, prismatic specimens having $100{\times}100{\times}500$ mm dimensions are prepared. Dynamic modulus of elasticity values obtained by non-destructive measurements techniques are well agreed with those given in the literature.

Clamping effects on the dynamic characteristics of composite tool bars (고정부 조건이 복합재료 공구용 바의 동적 특성에 미치는 영향)

  • 황희윤;김병철;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.199-202
    • /
    • 2003
  • The dynamic characteristics of composite tool bars depend on the clamping conditions such as clamping force, stiffness and surface characteristics of clamping parts as well as the basic structures. Therefore, in this work, the effects of clamping part conditions on the dynamic characteristics of cantilever type composite machine tool structures with clamped joint were investigated because the cantilever type machine tool structures are ideal cases for composite application to increase the natural frequency and damping of structures. New design of the clamping part was developed in order to improve shear properties of the clamping part and dynamic characteristics of composite tool bars. From FE analysis and Impulse response tests, dynamic characteristics were obtained with respect to the clamping part conditions of the new design.

  • PDF