• 제목/요약/키워드: dynamic tests

Search Result 2,298, Processing Time 0.029 seconds

Experimental Study on the Dynamic Characteristics of the Lead Extrusion Damper (납압출댐퍼의 동특성에 관한 실험적 연구)

  • 정민기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.482-489
    • /
    • 2000
  • The cyclic extrusion damper, Lead Extrusion Damper, was invented by the W H Robinson in order to produce the isolated buildings and bridges the damping force. Recently, LED was applied to reduce the vibration of the tall building. In this study, to verify the dynamic characteristics of LED, the tests to find out the dependences on the velocity, displacement, repeated cycle, and temperature were performed at structural lab of Unison Industrial Co. Ltd. Through the result of the dynamic characteristics. we`ll define the design parameters and apply the appropriate parts.

  • PDF

A Study on the Optimal Stress Compensation to Dynamic Recrrystallization for the Estimation of Forming Loads (성형하중예측을 위한 재결저분율 보상의 최적조건 도출)

  • 장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.131.1-134
    • /
    • 1999
  • The effect of dynamic recrystallization during hot forming process was implemented to a commercial FEM code by conditioned remeshing and remapping of sate variables. A datum strain for stress compensation was determined as a strain for maximum softening rate and was able to be formulated as a function of critical strain f($\varepsilon$). The validity of remapping criterion was examined by a series of mechanical tests and microstructural observation. The application of suggested datum resulted in better estimation of load-stroke during forging processes.

  • PDF

Quantitative Analysis of Hot Forming with Stress Compensation to Dynamic Recrystallization (고온성형중 동적재결정에 의한 하중감소의 정략적 해석)

  • 장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.203-206
    • /
    • 1999
  • The shift of flow behavior due to dynamic recrystallization during hot forming process is investigated, A series of load relaxation and compression tests has been conducted at various temperatures Constitutive relations and recrystallization behaviors were formulated from the mechanical test results, The consideration of dynamic recrystallization during a specific forming process was implemented to commercial FEM package by conditioned remeshing and remapping of state variables. Improvement of Load-Stroke prediction was validated by comparison with experimental results.

  • PDF

Field Test to Investigate Dynamic Characteristics of Steel Plate Girder Railway Bridges without Ballast (무도상 판형교의 동적거동특성 분석을 위한 실험적 연구)

  • 최진유;오지택;김현민;이상배
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.678-683
    • /
    • 2002
  • Field measurements were conducted to analysis dynamic characteristics of existing steel plate girder railway bridges without ballast. Three bridges which have 9m, 12m, 18m span length in Kyoung-Bu and Ho-Nam Line were selected for test. According to the each bridge, dynamic vertical deflections and vertical and horizontal accelerations were measured. Natural frequencies, vertical deflections and accelerations obtained from field tests were compared with the limit value specified in the UC, Japanese and Korean railway bridge specification.

  • PDF

In-hole seismic method for measuring dynamic properties of soils (지반물성치 측정을 위한 인흘탄성파시험)

  • Mok Young Jin;Kim Young Su;You Chang Yeon;Han Man Jin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.117-123
    • /
    • 2005
  • An in-hole seismic tests, which has been developed for measuring dynamic properties of soils and rock mass, is a bore hole seismic method that has cost effectiveness and practicality. The upgraded features include the motorized triggering system rather than the manual prototype version in the previous studies and a damper between source and receiver in the module. The performance of the probe has been verified through extensive cross-hole tests and in-hole tests at various sites. The dynamic stiffness of subsurface materials and rock mass have been evaluated and recently, the measurement of shear wave velocity was successfully adopted at horizontal holes of tunnel-face to install explosives. So the application of in-hole seismic test for various soil materials was certified.

  • PDF

Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • A series of wind tunnel free-decay sectional model dynamic tests were conducted to examine the effects of torsional-to-vertical natural frequency ratio of 2DOF bridge dynamic systems on the aerodynamic and dynamic properties of bridge decks. The natural frequency ratios tested were around 2.2:1 and 1.2:1 respectively, with the fundamental vertical natural frequency of the system held constant for all the tests. Three 2.9 m long twin-deck bridge sectional models, with a zero, 16% (intermediate gap) and 35% (large gap) gap-to-width ratio, respectively, were tested to determine whether the effects of frequency ratio are dependent on bridge deck cross-section shapes. The results of wind tunnel tests suggest that for the model with a zero gap-width, a model to approximate a thin flat plate, the flutter derivatives, and consequently the aerodynamic forces, are relatively independent of the torsional-to-vertical frequency ratio for a relatively large range of reduced wind velocities, while for the models with an intermediate gap-width (around 16%) and a large gap-width (around 35%), some of the flutter derivatives, and therefore the aerodynamic forces, are evidently dependent on the frequency ratio for most of the tested reduced velocities. A comparison of the modal damping ratios also suggests that the torsional damping ratio is much more sensitive to the frequency ratio, especially for the two models with nonzero gap (16% and 35% gap-width). The test results clearly show that the effects of the frequency ratio on the flutter derivatives and the aerodynamic forces were dependent on the aerodynamic cross-section shape of the bridge deck.

Applications of SASW Method to Civil Engineering (토목 공학에서의 SASW 기법의 활용)

  • Song Myung-Jun;Jung Yun-Moon;Lee Young-Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.174-179
    • /
    • 1999
  • Shear wave velocity, one of major elastic constants in the dynamic design for civil structures, is conventionally measured from downhole, crosshole or sonic logging tests. SASW (Spectral Analysis of Surface Waves) method, which overcomes the disadvantage of the in-hole tests, can evaluate subsurface stiffness nondestructively and nonintrusively through measuring surface waves on surface. In this paper, principles of the SASW method are briefly described and the results of various field tests, conducted to investigate the applicability of the method, are summarized. The SASW method was successfully applied in evaluating the effects of dynamic compaction at Inchon international airport site, applied in evaluating the integrity of the lining and sidewall at a testing tunnel located in Mabukri, and applied in detecting thickness of a concrete retaining wall. The results of field tests and the nondestructive and economical characteristics of the method show the promising future of the SASW method in civil engineering projects.

  • PDF

Numerical Analysis of Dynamic Centrifuge Model Tests Using an Effective Stress Model (유효응력모델을 이용한 동적 원심모형실험의 수치해석)

  • Park Sung-Sik;Kim Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • In this study an effective stress numerical procedure is used to assess the results of dynamic centrifuge tests under high effective stress. The centrifuge models consist of loose Nevada sand with an initial vertical effective stress of 380kPa at depth, and they are modeled as a one-dimentional soil column. Liquefaction occurred up to 37m or 22m at depth, and the onset of liquefaction triggering was opposite to the conventional liquefaction evaluation procedure. In other words, liquefaction occurs first at the top and propagates downward as shaking continues. The results observed in centrifuge tests are reasonably predicted by the effective stress model. It is noted that the degree of initial saturation and additional densification at depth arising from the application of the high acceleration field play a key role in capturing the results of dynamic centrifuge tests.

Determination of True Stress-Strain Curves of Auto-body Plastics Using FEGM (FEGM을 이용한 자동차용 플라스틱의 진응력-변형률 선도 도출)

  • Park, C.H.;Kim, J.S.;Huh, H.;Ahn, C.N.;Choi, S.J
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.223-226
    • /
    • 2009
  • The plastics are widely utilized in the inside of vehicles. The dynamic tensile characteristics of auto-body plastics are important in a prediction of deformation mode of the plastic component which undergoes the high speed deformation during car crash. This paper is concerned with the dynamic tensile characteristics of the auto-body plastics at intermediate strain rates. Quasi-static tensile tests were carried out at the strain rate ranged from 0.001/sec to 0.01/sec using the static tensile machine(Instron 5583). Dynamic tensile tests were carried out at the strain rate ranged from 0.1/sec to 100/sec using the high speed material testing machine developed. Conventional extensometry method is no longer available for plastics, since the deformation of plastic is accompanied with localized deformation. In this paper, quasi-static and dynamic tensile tests were performed using ASTM IV standard specimens with grids and images from a high speed camera were analyzed for strain measurement. True stress-strain relations and the actual strain rates at each deformation step were obtained by processing load data and deformation images, assuming the plastics to deform uniformly in each grid.

  • PDF

Development of a dynamic sensing system for civil revolving structures and its field tests in a large revolving auditorium

  • Luo, Yaozhi;Yang, Pengcheng;Shen, Yanbin;Yu, Feng;Zhong, Zhouneng;Hong, Jiangbo
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.993-1014
    • /
    • 2014
  • In civil engineering, revolving structures (RS) are a unique structural form applied in innovative architecture design. Such structures are able to revolve around themselves or along a certain track. However, few studies are dedicated to safety design or health monitoring of RS. In this paper, a wireless dynamic sensing system is developed for RS, and field tests toward a large revolving auditorium are conducted accordingly. At first, a wheel-rail problem is proposed: The internal force redistributes in RS, which is due to wheel-rail irregularity. Then the development of the sensing system for RS is presented. It includes system architecture, network organization, vibrating wire sensor (VWS) nodes and online remote control. To keep the sensor network identifiable during revolving, the addresses of sensor nodes are reassigned dynamically when RS position changes. At last, the system is mounted on a huge outdoor revolving auditorium. Considering the influence of the proposed problem, the RS of the auditorium has been designed conservatively. Two field tests are conducted via the sensing system. In the first test, 2000 people are invited to act as the live load. During the revolving process, data is collected from RS in three different load cases. The other test is the online monitoring for the auditorium during the official performances. In the end, the field-testing result verifies the existence of the wheel-rail problem. The result also indicates the dynamic sensing system is applicable and durable even while RS is rotating.