• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.03 seconds

The Effect of Otago Exercise Program on Physical Function and Fall Prevention in Disabled Elderly (오타고 운동 프로그램이 장애 노인의 신체적 기능과 낙상 예방에 미치는 효과)

  • Byun, YoungHee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.345-352
    • /
    • 2020
  • This study compared how falls can be reduced in disabled elderly people by using the Otago exercise program and ascertained the program's effects on physical function and psychological recovery. The subjects were 30 people, and were assigned to two groups. The experimental group had 17 people, and the other was the control group that had 13 people. The experimental group attended the 50-minute program twice a week for 12 weeks. The outcome measures for lower extremity muscle strength, postural balance, flexibility, and self-efficacy were tested at the pre-test and post-test phases. In the analysis, general characteristics were analyzed by descriptive statistics. Physical function and self-efficacy were analyzed by independent T-test between the two groups, and correspondence T-tests were used within the two groups. The result of this study demonstrated that the experimental group showed significant increases in lower extremity muscle strength, static balance, flexibility and dynamic balance, and self-efficacy showed a small increase in the experimental group. But the control group showed significant decreases in static balance, flexibility and fall efficacy. The control group also showed decreases in lower extremity strength and dynamic balance. So the results of this study proved that the Otago exercise program brought about positive changes to improve physical function and psychological function to help prevent disabled elderly people from falling.

Study on flexible segment efficiency for seismic performance improvement of subsea tunnel (해저터널 내진성능 향상을 위한 Flexible segment 효용성 연구)

  • Jang, Dong-In;Kim, Jong-Ill;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.503-515
    • /
    • 2017
  • Underground structures that have recently become larger are required to be stable not only during normal times but also during earthquakes. Especially, it is very important to maintain the stability of the subsea tunnels during the earthquake. The objective of this paper is to verify the effectiveness of the flexible segment, which is one of the breakthrough facilities to maintain the stability of the subsea tunnel during the earthquake using the shaking table test. Another goal of this paper is to propose the optimum position of the flexible segment through 3D dynamic numerical analysis based on the verified results from shaking table tests. The 1g shaking table test considering the similarity ratio (1:100) to the cross section of the selected artificial subsea tunnel was carried out considering the Geongju and Artificial seismic waves, longitudinal and lateral wave, and with/without flexible segments eight times or more. As a result of the shaking table test, it was confirmed that the flexible segment is effective in improving the seismic performance of the undersea tunnel in all the experimental results. In addition, 3D dynamic numerical analysis was performed to select the optimum position of the flexible segment which is effective for improving seismic performance. As a result, it was confirmed that the seismic acceleration is attenuated when the flexible segment is installed adjacent to the branch section in subsea tunnel.

Searching for Growth Engine: For the Firms Belonging to the Chaebol in the Korean Capital Markets (한국 재벌기업들의 성장 동력에 관한 재무적 결정요인 분석)

  • Kim, Hanjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7134-7147
    • /
    • 2014
  • This study examined one of the contemporary issues that may be interesting to academics and practitioners regarding the driving force of the growth rate for the firms belonging to the chaebols in the Korean capital markets. With respect to the empirical results obtained from two hypothesis tests, the first hypothesis was to identify any financial determinants on the growth rate by applying both dynamic panel data and static panel data models. The debt ratios relevant to the book- and market-value showed their positive relationships with the DV of GROWTH1, along with other significant IDVs such as one-period lagged DV of GROWTH_1, SIZE1 and FOS with statistical significance. Second, by employing conditional quantile regression (CQR) analysis, the control variables, such as ROA, SMARKET, time dummy variable of F2010 and F2011, and the industry dummies of IND3 and IND10, provided evidence of their significant influences on DV of GROWTH1.

A Simple Model for the Nonlinear Analysis of an RC Shear Wall with Boundary Elements (경계요소를 가진 철근콘크리트 전단벽의 비선형 해석을 위한 간편 모델)

  • Kim, Tae-Wan;Jeong, Seong-Hoon;You, Tae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • A simple model for reinforced concrete shear walls with boundary elements is proposed, which is a macro-model composed of spring elements representing flexure and shear behaviors. The flexural behaviour is represented by vertical springs at the wall ends, where the moment strength and rotational capacity of the wall are based on section analysis. The shear behaviour is represented by a horizontal spring at the wall center, where the key parameters for the shear behavior are based on the flexural behaviour since the shear walls with boundary elements are governed by the flexure. The proposed model was prepared with the results of hysteretic tests of the shear walls, and then the reliability of the hysteretic rule and variables was investigated by nonlinear dynamic analyses. Using parametric study with nonlinear dynamic analyses, the effect of the variables on demand and capacity, which are major parameters in seismic performance evaluation, are investigated. Results show that the measured and calculated shear forces versus the shear distortion relationships are slightly different, but the global response is well simulated. Furthermore, the demand and capacity are also changed in a similar way to the change in the major parameters so that the proposed model may be appropriate for reinforced concrete shear walls with boundary elements.

Real-Time Hybrid Testing Using a Fixed Iteration Implicit HHT Time Integration Method for a Reinforced Concrete Frame (고정반복법에 의한 암시적 HHT 시간적분법을 이용한 철근콘크리트 골조구조물의 실시간 하이브리드실험)

  • Kang, Dae-Hung;Kim, Sung-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.11-24
    • /
    • 2011
  • A real-time hybrid test of a 3 story-3 bay reinforced concrete frame which is divided into numerical and physical substructure models under uniaxial earthquake excitation was run using a fixed iteration implicit HHT time integration method. The first story inner non-ductile column was selected as the physical substructure model, and uniaxial earthquake excitation was applied to the numerical model until the specimen failed due to severe damage. A finite-element analysis program, Mercury, was newly developed and optimized for a real-time hybrid test. The drift ratio based on the top horizontal displacement of the physical substructure model was compared with the result of a numerical simulation by OpenSees and the result of a shaking table test. The experiment in this paper is one of the most complex real-time hybrid tests, and the description of the hardware, algorithm and models is presented in detail. If there is an improvement in the numerical model, the evaluation of the tangent stiffness matrix of the physical substructure model in the finite element analysis program and better software to reduce the computational time of the element state determination for the force-based beam-column element, then the comparison with the results of the real-time hybrid test and the shaking table test deserves to make a recommendation. In addition, for the goal of a "Numerical simulation of the complex structures under dynamic loading", the real time hybrid test has enough merit as an alternative to dynamic experiments of large and complex structures.

Sensitivity Analysis of Rockfill Input Parameters Influencing Crest Displacement of CFRD Subjected to Earthquake Loading (지진하중을 받는 CFRD 정상부 변위에 영향을 미치는 사력재료 입력물성에 대한 민감도분석)

  • Ha, Ik-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.1-9
    • /
    • 2007
  • The purpose of this study is to carry out the quantitative sensitivity analysis on rockfill material influencing the dam crest displacement of CFRD(Concrete-Faced Rockfill Dam) subjected to earthquake loading. The total 105 dynamic numerical analyses (2 input earthquake, 2 magnitudes for each earthquake. 27 rockfill material property combinations obtained from large triaxial tests) on CFR type "D" dam in operation were conducted. The global sensitivity analysis was carried out using the results of numerical analysis. From the results of sensitivity analysis, It was found that the crest settlement of the CFR type dam subjected to earthquake was absolutely affected by the shear modulus of rockfill material irrespective of the input earthquakes and the maximum acceleration of each earthquake. Also, it was found that the horizontal displacement of the dam crest was highly affected by the shear modulus of rockfill material though the extent of effect on that was smaller than the settlement and the extent of effect depended on the input earthquakes and the maximum acceleration of each earthquake. On the contrary, it was found that the effect of friction angle was negligible.

Digital Replantation in Industrial Punch Injuries (천공 펀치 기계에 의한 수지 절단부의 재접합술)

  • Lee, Kyu-Cheol;Lee, Dong-Chul;Kim, Jin-Soo;Ki, Sae-Hwi;Roh, Si-Young;Yang, Jae-Won
    • Archives of Reconstructive Microsurgery
    • /
    • v.19 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • Purpose: Industrial punch accidents involving fingers cause segmental injuries to tendons and neurovascular bundles. Although multiple-level segmental amputations are not replanted to regain function, most patients with an amputated finger want to undergo replantation for cosmetic as much as functional reason. The authors describe four cases of digital amputation by an industrial punch that involved the reinstatement of the amputated finger involving a joint and neurovascular bundle. Amputated segments were replanted to restore amputated surfaces and distal segments. Methods: A single institution retrospective review was performed. Inclusion criteria of punch injuries requiring replantation were applied to patients of all demographic background. Injury extent (size, tissue involvement), operative intervention, pre- and postoperative hand function were recorded. Result: Four cases of amputations were treated at our institute from 2004 to 2008 from industrial punch machine injury. Average patient age was 32.5 years (25~39 years) and there were three males and one female. Sizes of amputated segments ranged from $1.0{\times}1.0{\times}1.2\;cm^3$ to $3{\times}1.5{\times}1.6\;cm^3$. Tenorrhaphy was conducted after fixing fractured bone of the amputated segments with K-wire. Proximal and distal arteries and veins were repaired using the through & through method. The average follow-up period was thirteen months (2~26 months), and all replanted cases survived. Osteomyelitis occurred in one case, skin grafting after debridement was performed in two cases. Because joints were damaged in all four cases, active ranges of motion were much limited. However, a secondary tendon graft enhanced digit function in two cases. The two-point discrimination test showed normal values for both static and dynamic tests for three cases and 9 mm and 15 mm by dynamic and static testing, respectively, in one case. Conclusion: Though amputations from industrial punch machines are technically challenging to replant, our experience has shown it to be a valid therapy. In cases involving punch machine injury, if an amputated segment is available, the authors recommend that replantation be considered for preservation of finger length, joint mobility, and overall functional recovery of the hand.

  • PDF

Reliability Based Pile Bearing Capacity Evaluation (신뢰도에 근거한 말뚝의 지지력 평가)

  • Lee, In-Mo;Jo, Guk-Hwan;Lee, Jeong-Hak
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.9-22
    • /
    • 1995
  • The purpose of this study is to propose safety factors of pile bearing capacity based on the reliability analysis. Each prediction method involves various degrees of uncertainties. To account for these uncertainties in a systematic way, the ratios of the measured bearing capacity from pile load tests to the predicted bearing capacity are represented in the form of a probability density function. The safety factor for each design method is obtained so that the probability of pile foundation failure is less than 10-3. The Bayesian theorem is applied in a way that the distribution using static formulae is assumed to be the A-prior and the distribution using dynamic formulae or wave equation based methods is assumed to be the likelihood, and these two are combined to obtain the posterior which has the reduced uncertainty. The results of this study show that static formulae of the pile bearing capacity using the 5.p.7. N-value as well as dynamic formulae are highly unreliable and have to have the safety factor more than 7.4 : the wave equation analysis using PDA(Pile Driving Analyzer) system the most reliable with the safety factor close to 2.7. The safety factor could be reduced certain amount by adoption the Bayes methodology in pile design.

  • PDF

The Characteristics of the Set-up Effect of Driven Piles (타입 말뚝의 지지력 증가효과 특성)

  • 조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.235-246
    • /
    • 2003
  • Since the study of Lee et al.(1994) there have been some case studies on the set-up effect of driven piles in Korea country. However, comprehensive examination on the analyses of the set-up effect with various testing data has not been carried out. In particular, the analysis of the influence of soil type and pile shape on the set-up effect has not been reported. It is necessary to analyse the test results of production piles in order to apply the set-up effect of driven piles for the field engineering. In this study some test piling and analyses were performed to give basic information to the piling design as well as the research on the set-up effect in sandy soils. The analyses on the set-up effect were performed with the monitoring data obtained from the high-strain dynamic loading tests. It was shown that the set-up effect of driven piles was not only affected by soil type but also by soil formation history It turned out that the set-up effect in sandy soils was considerable one that should not be ignored in the field, and that the bearing capacity increase of pile is mainly caused by the increase of shaft resistance. It was shown that the set-up effect of closed pile was larger than that of opened pile in clayey soils, while the set-up effect of opened pile was larger than that of closed pile in sandy soils.

Probabilistic Analysis of Blasting Loads and Blast-Induced Rock Mass Responses in Tunnel Excavation (터널발파로 인한 굴착선주변 암반거동의 확률론적 연구)

  • 이인모;박봉기;박채우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.89-102
    • /
    • 2004
  • The generated blasting pressure wave initiated under decoupled-charge condition is a function of peak blasting pressure, rise time, and wave-shape function. The peak blasting pressure and the rise time are also the function of explosive and rock properties. The probabilistic distributions of explosive and rock properties are derived from the results of their property tests. Since the probabilistic distributions of explosive and rock properties displayed a normal distribution, the peak blasting pressure and the rise time can also be regarded as a normal distribution. Parameter analysis and uncertainty analysis were performed to identify the most influential parameter that affects the peak blasting pressure and the rise time. Even though the explosive properties were found to be the most influential parameters on the peak blasting pressure and the rise time from the parameter analyses, the result of uncertainty analysis showed that rock properties constituted major uncertainties in estimating the peak blasting pressure and the rise time rather than explosive properties. Damage and overbreak of the remaining rock around the excavation line induced by blasting were evaluated by dynamic numerical analysis. A user-subroutine to estimate the rock damage was coded based on the continuum damage mechanics. This subroutine was linked to a commercial program called 'ABAQUS/Explicit'. The results of dynamic numerical analysis showed that the rock damages generated by the initiation of stopping hole were larger than those from the initiation of contour hole. Several methods to minimize those damages were proposed such as relocation of stopping hole, detailed subdivision of rock classification, and so on. It was found that fracture probability criteria and fractured zones could be distinctively identified by applying fuzzy-random probability.