• Title/Summary/Keyword: dynamic tests

Search Result 2,298, Processing Time 0.031 seconds

Experimental validation of the seismic analysis methodology for free-standing spent fuel racks

  • Merino, Alberto Gonzalez;Pena, Luis Costas de la;Gonzalez, Arturo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.884-893
    • /
    • 2019
  • Spent fuel racks are steel structures used in the storage of the spent fuel removed from the nuclear power reactor. Rack units are submerged in the depths of the spent fuel pool to keep the fuel cool. Their free-standing design isolates their bases from the pool floor reducing structural stresses in case of seismic event. However, these singular features complicate their seismic analysis which involves a transient dynamic response with geometrical nonlinearities and fluid-structure interactions. An accurate estimation of the response is essential to achieve a safe pool layout and a reliable structural design. An analysis methodology based on the hydrodynamic mass concept and implicit integration algorithms was developed ad-hoc, but some dispersion of results still remains. In order to validate the analysis methodology, vibration tests are carried out on a reduced scale mock-up of a 2-rack system. The two rack mockups are submerged in free-standing conditions inside a rigid pool tank loaded with fake fuel assemblies and subjected to accelerations on a unidirectional shaking table. This article compares the experimental data with the numerical outputs of a finite element model built in ANSYS Mechanical. The in-phase motion of both units is highlighted and the water coupling effect is detailed. Results show a good agreement validating the methodology.

Wind turbine testing methods and application of hybrid testing: A review

  • Lalonde, Eric R.;Dai, Kaoshan;Lu, Wensheng;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.195-207
    • /
    • 2019
  • This paper presents an overview of wind turbine research techniques including the recent application of hybrid testing. Wind turbines are complex structures as they are large, slender, and dynamic with many different operational states, which limits applicable research techniques. Traditionally, numerical simulation is widely used to study turbines while experimental tests are rarer and often face cost and equipment restrictions. Hybrid testing is a relatively new simulation method that combines numerical and experimental techniques to accurately capture unknown or complex behaviour by modelling portions of the structure experimentally while numerically simulating the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests. Hybrid testing appears to be an effective tool for future wind turbine research, and the few studies that have applied it have shown promising results. This paper presents a literature review of experimental and numerical wind turbine testing, hybrid testing in structural engineering, and hybrid testing of wind turbines. Finally, several applications of hybrid testing for future wind turbine studies are proposed including multi-hazard loading, damped turbines, and turbine failure.

Influence of ZrO2 Particulates on Corrosion Resistance of Magnesium Alloy Coated by Plasma Electrolytic Oxidation (플라즈마 전해산화 처리된 마그네슘 합금의 내부식성에 미치는 코팅층 내 지르코니아 입자 영향)

  • Namgung, Seung;Ko, Young Gun;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.813-818
    • /
    • 2010
  • In current automobile and electronic industries, the use of magnesium alloys where both energy and weight saving are attainable is increasing. Despite their light weight, there has been an inherent drawback arising from the surface vulnerable to be oxidized with ease, specifically under corrosive environments. To protect magnesium alloy from corrosion, the present work deals with the electrochemical response of the oxide layer on magnesium alloy specimen prepared by plasma electrolytic oxidation (PEO) method in an electrolyte with zirconia powder. Surface observation using scanning electron microscopy evidences that a number of zirconia particles are effectively incorporated into oxide layer. From the results of potentio-dynamic tests in 3.5 wt% NaCl solution, the PEO-treated sample containing zirconia particles shows better corrosion properties than that without zirconia, which is the result of zirconia incorporation into the coating layer. Corrosion resistance is also measured by utilizing salt spray tests for 120 hrs.

A Study of the Vibration of an Axial Flow Pump through FSI Analysis Method (유체-구조 연성해석을 통한 축류펌프의 진동 연구)

  • Lee, Bo-Ram;Yun, Tae-Jong;Oh, Won-Bin;Lee, Chung-Woo;Kim, Hak Hyoung;Jeong, Yeong Jae;Kim, Ill-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.107-112
    • /
    • 2021
  • Pressure, which is a dynamic characteristic of a floodgate, is predicted using an FSI analysis method. A fluid analysis model and a hydrology analysis model were used as analysis models. As a result of the analysis, we found that a warped model has smaller acceleration than a square model. Additionally, this numerical analysis technique was applied to the actual hydrology, and the analysis results were compared with the results of the vibration tests. As a result, we confirmed that there is a small difference between the results of the vibration tests and the results of the FSI analysis. Through this analysis, the applicability and reliability of the FSI analysis method were verified. We concluded that the pressure of a floodgate can be measured through an FSI analysis method.

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가)

  • Lee, Dong-yeon;Kang, Yeong-rok
    • Journal of radiological science and technology
    • /
    • v.44 no.2
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

Fractional model and deformation of fiber-reinforced soil under traffic loads

  • Jiashun Liu;Kaixin Zhu;Yanyan Cai;Shuai Pang;Yantao Sheng
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.143-155
    • /
    • 2024
  • Traffic-induced cyclic loading leads to the rotation of principal stresses within pavement foundations, challenging accurate simulation with conventional triaxial testing equipment. To investigate the deformation characteristics of fiber-reinforced soil under traffic loads and to develop a fractional-order model to describe these deformations. A series of hollow cylinder torsional shear tests were conducted using the GDS-SSHCA apparatus. The effects of fiber content, load frequency, cyclic deviatoric stress amplitude, and cyclic shear stress amplitude on soil deformation were analyzed. The results revealed that fiber content up to 3% enhances soil resistance to deformation, while higher fiber content reduces it. Axial cumulative plastic deformation decreases with higher load frequencies and increases with higher cyclic stresses. The study also found that principal stress rotation exacerbates soil deformation. A fractional integral model based on the Riemann-Liouville operator was developed to describe the axial cumulative plastic strain, with its validity confirmed by supplementary tests. This model provides a scientific basis for understanding foundation deformation under traffic loading and contributes to the development of dynamic constitutive soil models.

Experimental Study of Heave Responses of Subsea Equipment during Installation Operation Using Offshore Crane (해상크레인을 이용한 다양한 해저 장비의 설치 작업 시 상하운동응답특성에 관한 모형 시험 연구)

  • Choi, Young-Myung;Nam, Bo Woo;Kim, Nam Woo;Park, In Bo;Hong, Sa Young;Kim, Jong Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • An experimental study on a subsea installation using an offshore crane was conducted. Concrete blocks, suction piles, and manifolds were considered in this study. Free decay tests were conducted to investigate the fluid characteristics of the subsea structures. The added masses of the structures were estimated. The motion response amplitudes of the subsea structures were compared for different structures and water depths. In addition, the dynamic tension transfer function of the crane wire was investigated. The root mean square values of the heave motion and the dynamic amplification factor of the wire tension were investigated in irregular waves.