• 제목/요약/키워드: dynamic temperature

검색결과 2,055건 처리시간 0.029초

폴리우레탄 폼의 동적 응답에 미치는 밀도 및 온도의 영향 (Dynamic Response of Polyurethane Foam with Density and Temperature Effects)

  • 황병관;김정현;김정대;이제명
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.291-297
    • /
    • 2019
  • Polyurethane foam is the most efficient, high-performance insulation material, used for liquefied natural gas carrier (LNGC) insulation. Because LNGC is exposed to sloshing impact load due to ship motion of 6 degrees of freedom, polyurethane foam should be sufficient dynamic properties. The dynamic properties of these polyurethane foam depends on temperature and density. Therefore, this study investigates the dynamic response of polyurethane foam for various temperature($25^{\circ}C$, $-70^{\circ}C$, $-163^{\circ}C$) and density($90kg/m^3$, $113kg/m^3$, $134kg/m^3$, $150kg/m^3$) under drop impact test with impact energy of 20J, 50J, and 80J. For dynamic response was evaluated in terms of peak force, peak displacement, absorb energy, and the mechanical property with minimized density effects. The results show the effect of temperature and density on the polyurethane foam material for the dynamic response.

조선 해양 구조물용 강재의 소성 및 파단 특성 V: 온도 의존성을 고려한 변형률 속도에 관한 실험적 연구 (Plasticity and Fracture Behaviors of Marine Structural Steel, Part V: Effects of Strain Rate and Temperature)

  • 정준모;임성우;김경수
    • 한국해양공학회지
    • /
    • 제25권3호
    • /
    • pp.73-84
    • /
    • 2011
  • This is the fifth in a series of companion papers dealing with the dynamic hardening properties of various marine structural steels at intermediate strain rates. Five steps of strain rate levels (0.001, 1, 10, 100, 200/s) and three steps of temperature levels (LT ($-40^{\circ}C$), RT, and HT ($200^{\circ}C$)) were taken into account for the dynamic tensile tests of three types of marine structural steels: API 2W50 and Classifications EH36 and DH36. The total number of specimens was 180 pieces. It was seen that the effects of dynamic hardening became clearer at LT than at RT. Dynamic strain aging accompanying serrated flow stress curves was also observed from high temperature tests for all kinds of steels. The dynamic hardening factors (DHFs) at the two temperature levels of LT and RT were derived at the three plastic strain levels of 0.05, 0.10, 0.15 from dynamic tensile tests. Meanwhile, no DHFs were found for the high temperature tests because a slight negative strain rate dependency due to dynamic strain aging had occurred. A new formulation to determine material constant D in a Cowper-Symonds constitutive equation is provided as a function of the plastic strain rate, as well as the plastic strain level. The proposed formula is verified by comparing with test flow stress curves, not only at intermediate strain rate ranges but also at high strain rate ranges.

드롭랜딩 시 국소부위 온열처치와 동적 준비운동이 하지의 운동역학적 변인에 미치는 영향 (Thermotherapy and Dynamic Warm-up on the Kinetic Parameters during Drop-landing)

  • Kim, Sungmin;Song, Jooho;Han, Sanghyuk;Moon, Jeheon
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.297-307
    • /
    • 2021
  • Objective: The aim of this study was to analyze kinetic variables between thermotherapy and dynamic warm-up during drop-landing. Method: Twenty male healthy subjects (Age: 21.85 ± 1.90 years, Height: 1.81 ± 0.06 cm, Weight: 68.5 ± 7.06 kg) underwent three treatments applied on the thermotherapy of femoral muscles and a dynamic warm-up. The thermotherapy was performed for 15 minutes while sitting in a chair using an electric heating pad equipped with a temperature control device. Dynamic warm-up performed 14 exercise, a non-treatment was sitting in a chair for 15 minutes. Core temperature measurements of all subjects were performed before landing at a height of 50 cm. During drop-landing, core temperature, joint angle, moment, work of the sagittal plane was collected and analyzed. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that Thermotherapy was increased temperature than other treatments (p = .000). During drop-landing, hip joint of dynamic warm-up was slower for angular velocity (p < .005), and left ankle joint was fastest than other treatments (p = .004). Maximum joint moment of dynamic warm-up was smaller for three joints (hip extension: p = .000; knee flexion/extension: p = .001/.000; ankle plantarflexion: p = .000). Negative work of dynamic warm-up was smaller than other treatments (p = .000). Conclusion: In conclusion, the thermotherapy in the local area doesn't affect the eccentric contraction of the thigh. The dynamic warm-up treatment minimized the joint moment and negative work of the lower joint during an eccentric contraction, it was confirmed that more active movement was performed than other treatment methods.

Structural damage detection including the temperature difference based on response sensitivity analysis

  • Wei, J.J.;Lv, Z.R.
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.249-260
    • /
    • 2015
  • Damage detection based on a reference set of measured data usually has the problem of different environmental temperature in the two sets of measurements, and the effect of temperature difference is usually ignored in the subsequent model updating. This paper attempts to identify the structural damage including the temperature difference with artificial measurement noise. Both local damages and the temperature difference are identified in a gradient-based model updating method based on dynamic response sensitivity. The sensitivities of dynamic response with respect to the system parameters and temperature difference are calculated by direct integration method. The measured dynamic responses of the structure from two different states are used directly to identify the structural local damages and the temperature difference. A single degree-of-freedom mass-spring system and a planar truss structure are studied to illustrate the effectiveness of the proposed method.

차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 - (Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature -)

  • 이희종;송정한;박성호;허훈
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

0.15C-0.2Si-0.5Mn 저탄소강의 동적 재결정 거동에 미치는 Nb 첨가와 공정 변수의 영향 (Effect of Nb Contents and Processing Parameters on Dynamic Recrystallization Behavior of 0.15C-0.2Si-0.5Mn Low-Carbon Steels)

  • 이상인;서하늘;이재승;황병철
    • 열처리공학회지
    • /
    • 제29권5호
    • /
    • pp.209-215
    • /
    • 2016
  • In this study, the effect of Nb contents and processing parameters on dynamic recrystallization behaviour of 0.15C-0.2Si-0.5Mn low-carbon steels was investigated. Three kinds of steel specimens with different Nb contents were fabricated and then high-temperature compressive deformation test was conducted by varying reheating temperature (RT), deformation temperature (DT), and strain rate (SR). The Nb2 and Nb4 specimens containing Nb had smaller prior austenite grain size than the Nb0 specimens, presumably due to pinning effect by the formation of carbides and carbonitrides precipitates at austenite grain boundaries. The high-temperature compressive deformation test results showed that dynamic recrystallization behavior was suppressed in the specimens containing Nb as the strain rate increased and deformation temperature decreased because of pinning effect by precipitates, grain boundary dragging effects by solute atoms, although the compressive stress increased with increasing strain rate and decreasing deformation temperature.

고체산화물 연료전지의 동적 성능 특성 해석 (Analysis of Dynamic Performance of Solid Oxide Fuel Cells)

  • 양진식;손정락;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1652-1657
    • /
    • 2004
  • Model for the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reaction in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power and chemical compositions with different levels of load changes are investigated.

  • PDF

SS41강 용접부의 동적균열개시인성 평가 (An Evaluation of Dynamic Crack Initiation Toughness in SS41 Steel Welding)

  • 정재강;김건호
    • Journal of Welding and Joining
    • /
    • 제12권2호
    • /
    • pp.108-118
    • /
    • 1994
  • In the present study, the dynamic crack initiation toughness and total absorbed energy behavior of Heat Affected Zone(HAZ) was experimentally evaluated for SS41 steel welding. The materials were submerged arc-welded SS41 steel plate with thickness 19mm. The test temperature range was from $20^{\circ}C$(room temperature) to $-70^{\circ}C$ The HAZ of welding were divided into three sub-zones for analysis; H1, H2, H3, according to the distance from the fushion line. From the experimental studies, the reference value of dynamic crack initiation toughness $(J_{Id(R)})$ can be use to estimate dynamic fracture toughness characteristics of steel welding.

  • PDF

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • 제20권5호
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

갑작스런 부하 변동에 따른 고체산화물 연료전지의 동적 성능 거동 특성에 관한 연구 (A Study on the Dynamic Performance Behavior of Solid Oxide Fuel Cells with Stepwise Load Changes)

  • 손정락;노승탁;양진식
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.477-484
    • /
    • 2005
  • Model fer the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reactions in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power, and chemical compositions with different levels of load change are investigated.