• 제목/요약/키워드: dynamic support vector machine

검색결과 65건 처리시간 0.027초

Kernel Relaxation과 동적 모멘트를 조합한 Support Vector Machine의 학습 성능 향상 (Improving Learning Performance of Support Vector Machine using the Kernel Relaxation and the Dynamic Momentum)

  • 김은미;이배호
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.735-744
    • /
    • 2002
  • 본 논문에서는 커널완화법과 동적모멘트를 이용한 support vector machines의 학습성능 개선을 제안하였다. 제안된 학습 방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습 속성을 반영하는 동적모멘트 방법이다. 기존의 정적 상수로 정의된 모멘트가 전체 학습에 동등하게 영향을 주는 반면 제안된 동적모멘트를 이용한 학습방법은 학습 수행에 따라 동적으로 모멘트를 변경함으로써 수렴속도와 학습 성능을 효과적으로 제어할 수 있다. 제안된 학습법을 support vector machine의 새로운 순차 학습 방법인 커널완화법에 적용하였다. 신경망 분류기 표준 평가 데이터인 SONAR 데이터를 이용하여 실험한 곁과 동적모멘트를 이용한 방법이 수렴속도와 학습 성능면에서 기존의 커널완화법과 정적모멘트를 이용한 학습법에 비해 향상된 성능을 보이는 것을 확인하였다.

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

Support Vector Machine based on Stratified Sampling

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권2호
    • /
    • pp.141-146
    • /
    • 2009
  • Support vector machine is a classification algorithm based on statistical learning theory. It has shown many results with good performances in the data mining fields. But there are some problems in the algorithm. One of the problems is its heavy computing cost. So we have been difficult to use the support vector machine in the dynamic and online systems. To overcome this problem we propose to use stratified sampling of statistical sampling theory. The usage of stratified sampling supports to reduce the size of training data. In our paper, though the size of data is small, the performance accuracy is maintained. We verify our improved performance by experimental results using data sets from UCI machine learning repository.

앙상블 SVM을 이용한 동적 웹 정보 예측 시스템 (Dynamic Web Information Predictive System Using Ensemble Support Vector Machine)

  • 박창희;윤경배
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.465-470
    • /
    • 2004
  • 기존의 웹 정보 예측 시스템은 예측에 필요한 정보를 얻기 위하여 사용자 프로파일과 사용자로부터의 명시적 피드백 정보를 필요로 하는 단점이 존재한다. 본 논문에서는 이러한 단점을 극복하고자 웹 사이트에 접속한 고객의 행동을 나타내는 클릭 스트림 데이터와 이를 기반으로 한 사용자의 암시적 피드백 정보를 이용하여 각 사용자가 가장 필요로 하는 웹 정보를 예측한다. 이를 이용하여 관련 정보를 제공할 수 있는 앙상블 SVM을 이용한 동적 웹 정보 예측 시스템을 설계하고 구현하며, 기존의 웹 정보 예측 시스템과 성능 비교를 수행한 결과, 제안된 방법의 우수함이 입증되었다.

앙상블 Support Vector Machine과 하이브리드 SOM을 이용한 동적 웹 정보 추천 시스템 (Dynamic Recommendation System of Web Information Using Ensemble Support Vector Machine and Hybrid SOM)

  • 윤경배;최준혁
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.433-438
    • /
    • 2003
  • 최근, 인터넷 쇼핑몰과 같은 웹 사이트를 대상으로 각 사용자에게 가장 필요한 정보를 제공하기 위한 웹 정보 추천 시스템에 대한 연구가 활발히 진행되고 있다. 사용자 프로파일과 명시적 피드백에 의존하는 대부분의 웹 정보 추천 시스템의 경우 사용자의 다양하고 정확한 정보를 필요로 하지만 실세계의 문제에 있어 이러한 연관 정보를 얻기란 쉽지 않다. 본 논문에서는 사용자의 명시적 피드백과 프로파일에 의존하지 않는 웹 정보 서비스를 위한 정보 예측 기법을 제안한다. 이를 위해 앙상블 Support Vector Machine과 하이브리드 SOM을 설계하고 적용하여 웹 로그 데이터의 희소성 문제를 해결하면서 대용량 웹 데이터로부터 사용자에게 꼭 필요하고 유용한 정보를 추천할 수 있는 동적 웹 정보 예측 시스템을 설계하고 구현한다.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Parameter optimization for SVM using dynamic encoding algorithm

  • Park, Young-Su;Lee, Young-Kow;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2542-2547
    • /
    • 2005
  • In this paper, we propose a support vector machine (SVM) hyper and kernel parameter optimization method which is based on minimizing radius/margin bound which is a kind of estimation of leave-one-error. This method uses dynamic encoding algorithm for search (DEAS) and gradient information for better optimization performance. DEAS is a recently proposed optimization algorithm which is based on variable length binary encoding method. This method has less computation time than genetic algorithm (GA) based and grid search based methods and better performance on finding global optimal value than gradient based methods. It is very efficient in practical applications. Hand-written letter data of MNI steel are used to evaluate the performance.

  • PDF

Smoke detection in video sequences based on dynamic texture using volume local binary patterns

  • Lin, Gaohua;Zhang, Yongming;Zhang, Qixing;Jia, Yang;Xu, Gao;Wang, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5522-5536
    • /
    • 2017
  • In this paper, a video based smoke detection method using dynamic texture feature extraction with volume local binary patterns is studied. Block based method was used to distinguish smoke frames in high definition videos obtained by experiments firstly. Then we propose a method that directly extracts dynamic texture features based on irregular motion regions to reduce adverse impacts of block size and motion area ratio threshold. Several general volume local binary patterns were used to extract dynamic texture, including LBPTOP, VLBP, CLBPTOP and CVLBP, to study the effect of the number of sample points, frame interval and modes of the operator on smoke detection. Support vector machine was used as the classifier for dynamic texture features. The results show that dynamic texture is a reliable clue for video based smoke detection. It is generally conducive to reducing the false alarm rate by increasing the dimension of the feature vector. However, it does not always contribute to the improvement of the detection rate. Additionally, it is found that the feature computing time is not directly related to the vector dimension in our experiments, which is important for the realization of real-time detection.

Short-Term Load Forecasting Based on Sequential Relevance Vector Machine

  • Jang, Youngchan
    • Industrial Engineering and Management Systems
    • /
    • 제14권3호
    • /
    • pp.318-324
    • /
    • 2015
  • This paper proposes a dynamic short-term load forecasting method that utilizes a new sequential learning algorithm based on Relevance Vector Machine (RVM). The method performs general optimization of weights and hyperparameters using the current relevance vectors and newly arriving data. By doing so, the proposed algorithm is trained with the most recent data. Consequently, it extends the RVM algorithm to real-time and nonstationary learning processes. The results of application of the proposed algorithm to prediction of electrical loads indicate that its accuracy is comparable to that of existing nonparametric learning algorithms. Further, the proposed model reduces computational complexity.

서포트벡터머신을 이용한 충격전 낙상방향 판별 (Determination of Fall Direction Before Impact Using Support Vector Machine)

  • 이정근
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.47-53
    • /
    • 2015
  • Fall-related injuries in elderly people are a major health care problem. This paper introduces determination of fall direction before impact using support vector machine (SVM). Once a falling phase is detected, dynamic characteristic parameters measured by the accelerometer and gyroscope and then processed by a Kalman filter are used in the SVM to determine the fall directions, i.e., forward (F), backward (B), rightward (R), and leftward (L). This paper compares the determination sensitivities according to the selected parameters for the SVM (velocities, tilt angles, vs. accelerations) and sensor attachment locations (waist vs. chest) with regards to the binary classification (i.e., F vs. B and R vs. L) and the multi-class classification (i.e., F, B, R, vs. L). Based on the velocity of waist which was superior to other parameters, the SVM in the binary case achieved 100% sensitivities for both F vs. B and R vs. L, while the SVM in the multi-class case achieved the sensitivities of F 93.8%, B 91.3%, R 62.3%, and L 63.6%.