• Title/Summary/Keyword: dynamic subcarrier allocation

Search Result 10, Processing Time 0.023 seconds

Cross-layer Dynamic Subcarrier Allocation with Adaptive Service Rate Control in SC-FDMA System

  • Ye, Fang;Su, Chunxia;Li, Yibing;Zhang, Xu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4823-4843
    • /
    • 2017
  • In this paper, an improved utility-based cross-layer dynamic subcarrier allocation (DSA) algorithm is proposed for single carrier frequency division multiple access (SC-FDMA) system, which adopts adaptive service rate control (ASRC) to eliminate the service rate waste and improve the spectral efficiency in heterogeneous network including non-real-time traffic and real-time traffic. In this algorithm, furthermore, a first in first out (FIFO) queuing model with finite space is established on the cross-layer scheduling framework. Simulation results indicate that by taking the service rate constraint as the necessary condition for optimality, the ASRC algorithm can effectively eliminate the service rate waste without compromising the scheduling performance. Moreover, the ASRC algorithm is able to further improve the quality of service (QoS) performance and transmission throughput by contributing an attractive performance trade-off between real-time and non-real-time applications.

Low Complexity Subcarrier Allocation Scheme for OFDMA Systems (OFDMA 시스템을 위한 저 복잡도 부반송파 할당기법)

  • Woo, Choong-Chae;Wang, Han-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • The focus of this paper is a proposal for a computationally efficient dynamic subcarrier allocation (DSA) algorithm for orthogonal frequency-division multiple access (OFDMA) systems. The proposed DSA algorithm considerably reduces the computational complexity and the amount of channel quality information (CQI) compared to amplitude craving greedy (ACG) algorithms, which use full CQI. At the same time, the performance of the proposed algorithm closely appear to ACG algorithms. Moreover, the authors present a new bandwidth-assignment algorithm produced by modifying bandwidth assignment based on the signal-to-noise ratio (BABS). This modified BABS algorithm enables the proposed DSA algorithm to produce a strong outage performance gain over the conventional scheme.

Resouce Allocation for Multiuser OFDM Systems (다중사용자 OFDM 광대역 무선인터넷 시스템의 자원할당 방법)

  • Chung, Yong-Joo;Paik, Chun-Hyun;Kim, Hu-Gon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.33-46
    • /
    • 2007
  • This study deals with the adaptive multiuser OFDM (Orthogonal Frequency Division Multiplexing) system which adjusts the resource allocation according to the environmental changes in such as wireless and quality of service required by users. The resource allocation includes subcarrier assignment to users, modulation method and power used for subcarriers. We first develop a general optimization model which maximizes data throughput while satisfying data rates required by users and total power constraints. Based on the property that this problem has the 0 duality gap, we apply the subgradient dual optimization method which obtains the solution of the dual problem by iteration of simple calculations. Extensive experiments with realistic data have shown that the subgradient dual method is applicable to the real world system, and can be used as a dynamic resource allocation mechanism.

A Joint Resource Allocation Scheme for Relay Enhanced Multi-cell Orthogonal Frequency Division Multiple Networks

  • Fu, Yaru;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.288-307
    • /
    • 2013
  • This paper formulates resource allocation for decode-and-forward (DF) relay assisted multi-cell orthogonal frequency division multiple (OFDM) networks as an optimization problem taking into account of inter-cell interference and users fairness. To maximize the transmit rate of system we propose a joint interference coordination, subcarrier and power allocation algorithm. To reduce the complexity, this semi-distributed algorithm divides the primal optimization into three sub-optimization problems, which transforms the mixed binary nonlinear programming problem (BNLP) into standard convex optimization problems. The first layer optimization problem is used to get the optimal subcarrier distribution index. The second is to solve the problem that how to allocate power optimally in a certain subcarrier distribution order. Based on the concept of equivalent channel gain (ECG) we transform the max-min function into standard closed expression. Subsequently, with the aid of dual decomposition, water-filling theorem and iterative power allocation algorithm the optimal solution of the original problem can be got with acceptable complexity. The third sub-problem considers dynamic co-channel interference caused by adjacent cells and redistributes resources to achieve the goal of maximizing system throughput. Finally, simulation results are provided to corroborate the proposed algorithm.

Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication

  • Manimekalai, Thirunavukkarasu;Joan, Sparjan Romera;Laxmikandan, Thangavelu
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.846-858
    • /
    • 2020
  • The non-orthogonal multiple access (NOMA) technique offers throughput improvement to meet the demands of the future generation of wireless communication networks. The objective of this work is to further improve the throughput by including an underlay cognitive radio network with an existing multi-carrier NOMA network, using cooperative communication. The throughput is maximized by optimal resource allocation, namely, power allocation, subcarrier assignment, relay selection, user pairing, and subcarrier pairing. Optimal power allocation to the primary and secondary users is accomplished in a way that target rate constraints of the primary users are not affected. The throughput maximization is a combinatorial optimization problem, and the computational complexity increases as the number of users and/or subcarriers in the network increases. To this end, to reduce the computational complexity, a dynamic network resource allocation algorithm is proposed for combinatorial optimization. The simulation results show that the proposed network improves the throughput.

The performance analysis for intercell interference reduction techniques in WiBro networks (와이브로 기반의 셀간 간섭 제거 기술 성능 분석)

  • Park Chi-Ho;Oh Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.104-112
    • /
    • 2006
  • In this thesis, we analyze performance related to reduction scheme of intercell interference causing serious problems in wiBro system. Frequency reusing factor(FUF) is 1 in WiBro system, and it means that a adjacent cell uses same frequency band. This channel environment raises intercell interference problem, which provokes serious problems related to system performance and channel capacity. Consequently, it affects deterioration in system performance as a whole. We analyze intercell interference when appling a various schemes such as (DCA)Dynamic Channel Allocation, CS(Channel Segregation), IMUFR(Interference Mitigation Using Frequency Reuse), IDMA(Interleave Division Multiple Access), IDMA(Interleave Division Multiple Access), FH-OFDM, CRSA(Conceptual Random Subcarrier Allocation), and HDD

Dynamic Channel Allocation Algorithm for Co-channel Interference Avoidance in Multi-cell OFDMA Systems (OFDMA 다중 셀 환경에서 동일 채널 간섭을 피하기 위한 동적 자원 할당 알고리즘)

  • Lee, Je-Min;Seo, Woo-Hyun;Wang, Hano;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.92-98
    • /
    • 2007
  • We propose the schemes for the dynamic channel allocation (DCA) in multi-cell OFDMA systems to avoid co-channel interference (CCI) without the additional complexity. The allocatable subcarriers areas, which is designed to avoid CCI among cells, are determined for each cell. Each cell allocates the subcarriers within the allocatable subcarriers area of the cell independently. We consider the trade off between the reduced frequency selection diversity and the amount of CCI on a subcarrier by the determination of allocatable subcarriers area. Hence, the equal allocation bound scheme for the high selectivity channel and the flexible allocation bound scheme for the low selectivity channel are proposed. Through the numerical results, it is confirmed that the proposed schemes have better performance in the aspects of the number of overlapping allocated subcarriers, the capacity and the outage probability compared to the case which does not determined the allocatable subcarriers area.

The study for inter-cell interference reduction techniques in portable internet networks. (휴대인터넷의 셀간 간섭 제거에 관한 연구)

  • Park, Chi-Ho;Hwan, Oh-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.229-230
    • /
    • 2006
  • In this thesis, we analyze performance related to reduction scheme of inter-cell interference causing serious problems in portable internet system. Frequency reusing factor(FUF) is 1 in portable internet system, and it means that a adjacent cell uses same frequency band. This channel environment raises inter-cell interference problem, which provokes serious problems related to system performance and channel capacity. Consequently, it affects deterioration in system performance as a whole. We analyze inter-cell interference when appling a various schemes such as (DCA)Dynamic Channel Allocation, CS(Channel Segregation), IDMA(Interleave Division Multiple Access), FH-OFDM, CRSA(Conceptual Random Subcarrier Allocation), and HDD

  • PDF

Dynamic Frequency Reuse Scheme Based on Traffic Load Ratio for Heterogeneous Cellular Networks (이종 셀룰러 네트워크 환경에서 트래픽 비율에 따른 동적 주파수 재사용 기법)

  • Chung, Sungmoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2539-2548
    • /
    • 2015
  • Overcoming inter-cell interference and spectrum scarcity are major issues in heterogeneous cellular networks. Static Frequency reuse schemes have been proposed as an effective way to manage the spectrum and reduce ICI(Inter cell Interference) in cellular networks. In a kind of static frequency reuse scheme, the allocations of transmission power and subcarriers in each cell are fixed prior to system deployment. This limits the potential performance of the static frequency reuse scheme. Also, most of dynamic frequency reuse schemes did not consider small cell and the network environment when the traffic load of each cell is heavy and non-uniform. In this paper, we propose an inter-cell resource allocation algorithm that dynamically optimizes subcarrier allocations for the multi-cell heterogeneous networks. The proposed dynamic frequency reuse scheme first finds the subcarrier usage in each cell-edge by using the exhaustive search and allocates subcarrier for all the cells except small cells. After that it allocates subcarrier for the small cell and then iteratively repeats the process. Proposed dynamic frequency reuse scheme performs better than previous frequency reuse schemes in terms of the throughput by improving the spectral efficiency due to it is able to adapt the network environment immediately when the traffic load of each cell is heavy and non-uniform.

Channel State-Aware Joint Dynamic Cell Coordination Scheme using Adaptive Modulation and Variable Reuse Factor in OFDMA (OFDMA 하향링크에서 적응적 변조와 여러 개의 재사용 지수를 동시에 사용하고 채널 상태를 고려한 동적 셀 코디네이션)

  • Byun, Dae-Wook;Ki, Young-Min;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.24-33
    • /
    • 2007
  • In this paper, two different dynamic cell coordination strategies for frequency flat and selective fading are proposed for efficient subcarrier allocation in the joint consideration of adaptive modulation and variable frequency reuse in the channel-aware OFDMA downlink multicellular environment. Compared to a conventional OFDMA system without cell coordination, where system throughput may become degraded due to the persistent interference from other cells, the proposed system dynamically allows RNC to apply different reuse factors on each subchannel and scheduling in consideration of channel and interference conditions of individual users so as to increase the system throughput and guarantee QoS of each user. In a frequency flat fading, the dynamic scheme with the proposed scheduling achieves on average three times larger throughput than the conventional dynamic scheme [8]. In a selective fading channel, the proposed schemes showed 2.6 times as large throughput as that of a single reuse factor of one for all subchannels.