• Title/Summary/Keyword: dynamic spectrum

Search Result 662, Processing Time 0.022 seconds

A Dynamic QoS Model for improving the throughput of Wideband Spectrum Sharing in Cognitive Radio Networks

  • Manivannan, K.;Ravichandran, C.G.;Durai, B. Sakthi Karthi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3731-3750
    • /
    • 2014
  • This paper considers a wideband cognitive radio network (WCRN) which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and studies the ergodic throughput of the WCRN that operated under: the wideband sensing-based spectrum sharing (WSSS) scheme and the wideband opportunistic spectrum access (WOSA) scheme. In our analysis, besides the average interference power constraint at PU, the average transmit power constraint of SU is also considered for the two schemes and a novel cognitive radio sensing frame that allows data transmission and spectrum sensing at the same time is utilized, and then the maximization throughput problem is solved by developing a gradient projection method. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

A study on Optimization of Reference Spectrum for Improvement of Fixture Performance in Random Vibration Control (랜덤진동제어에서 치구성능향상을 위한 기준스펙트럼의 최적화에 대한 연구)

  • 김준엽;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.284-291
    • /
    • 1995
  • This paper proposes a method for determination of optimal reference spectrum in random vibration control. The least square method is used to minimize the spectrum deviation between the specified reference spectrum and spectra at the specimen-mounted points. This method needs only the measured FRF's at the control point and specimen-mounted points in pre-vibration test. Using the proposed method as reference spectrum, it is possible to easily predict spectra at the specimen-mounted points, and also to reduce overtest resulting from dynamic characteristics of shaker and fixture. This method is shown through theoretical and experimental results to be an effective method.

Cooperative Spectrum Sensing using Kalman Filter based Adaptive Fuzzy System for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.287-304
    • /
    • 2012
  • Spectrum sensing is an important functionality for cognitive users to look for spectrum holes before taking transmission in dynamic spectrum access model. Unlike previous works that assume perfect knowledge of the SNR of the signal received from the primary user, in this paper we consider a realistic case where the SNR of the primary user's signal is unknown to both fusion center and cognitive radio terminals. A Kalman filter based adaptive Takagi and Sugeno's fuzzy system is designed to make the global spectrum sensing decision based on the observed energies from cognitive users. With the capacity of adapting system parameters, the fusion center can make a global sensing decision reliably without any requirement of channel state information, prior knowledge and prior probabilities of the primary user's signal. Numerical results prove that the sensing performance of the proposed scheme outperforms the performance of the equal gain combination based scheme, and matches the performance of the optimal soft combination scheme.

A Study on Evaluation of Floor Response Spectrum for Seismic Design of Non-Structural Components (비구조요소의 내진 설계를 위한 기존 층응답스펙트럼의 평가)

  • Choi, Kyung Suk;Yi, Waon Ho;Yang, Won-Jik;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.279-291
    • /
    • 2013
  • The seismic damage of non-structural components, such as communication facilities, causes direct economic losses as well as indirect losses which result from social chaos occurring with downtime of communication and financial management network systems. The current Korean seismic code, KBC2009, prescribes the design criteria and requirements of non-structural components based on their elastic response. However, it is difficult for KBC to reflect the dynamic characteristics of structures where non-structural components exist. In this study, both linear and nonlinear time history analyses of structures with various analysis parameters were carried out and floor acceleration spectra obtained from analyses were compared with both ground acceleration spectra used for input records of the analyses and the design floor acceleration spectrum proposed by National Radio Research Agency. Also, this study investigates to find out the influence of structural dynamic characteristics on the floor acceleration spectra. The analysis results show that the acceleration amplification is observed due to the resonance phenomenon and such amplification increases with the increase of building heights and with the decrease of structure's energy dissipation capacities.

Supporting Trusted Soft Decision Scheme Using Volatility Decay in Cooperative Spectrum Sensing

  • Zhao, Feng;Feng, Jingyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2067-2080
    • /
    • 2016
  • Cooperative spectrum sensing (CSS) for vacant licensed bands is one of the key techniques in cognitive radio networks. Currently, sequential probability ratio test scheme (SPRT) is considered as a powerful soft decision approach to improve the sensing result for CSS. However, SPRT assumes all secondary users (SU) are honest, and thus offering opportunities for malicious SUs to launch the spectrum sensing data falsification attack (SSDF attack). To combat such misbehaved behaviors, recent efforts have been made to trust mechanism. In this paper, we argue that powering SPRT with traditional trust mechanism is not enough. Dynamic SSDF attackers can maintain high trust in an alternant process of submitting honest or false sensing data, resulting in difficultly detecting them. Noting that the trust value of dymamic SSDF attackers behave highly volatile, a novel trusted SPRT scheme (VSPRT) based on volatility decay analysis is proposed in this paper to mitigate the harmful effect of dynamic SSDF attackers in the process of the soft-decision data fusion, and thus improving the accuracy of the final sensing result. Simulation results show that the VSPRT scheme outperforms the conventional SPRT schemes.

Opportunistic Spectrum Access with Discrete Feedback in Unknown and Dynamic Environment:A Multi-agent Learning Approach

  • Gao, Zhan;Chen, Junhong;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3867-3886
    • /
    • 2015
  • This article investigates the problem of opportunistic spectrum access in dynamic environment, in which the signal-to-noise ratio (SNR) is time-varying. Different from existing work on continuous feedback, we consider more practical scenarios in which the transmitter receives an Acknowledgment (ACK) if the received SNR is larger than the required threshold, and otherwise a Non-Acknowledgment (NACK). That is, the feedback is discrete. Several applications with different threshold values are also considered in this work. The channel selection problem is formulated as a non-cooperative game, and subsequently it is proved to be a potential game, which has at least one pure strategy Nash equilibrium. Following this, a multi-agent Q-learning algorithm is proposed to converge to Nash equilibria of the game. Furthermore, opportunistic spectrum access with multiple discrete feedbacks is also investigated. Finally, the simulation results verify that the proposed multi-agent Q-learning algorithm is applicable to both situations with binary feedback and multiple discrete feedbacks.

Formulation and Verification on Ritz Method for In-Cabinet Response Spectrum (캐비닛내부응답스펙트럼 산정을 위한 리츠방법의 정식화 및 단순예제를 통한 검증)

  • Kim, Ki Hyun;Hong, Kee-Jeung;Cho, Sung Gook;Park, Woong Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.279-288
    • /
    • 2019
  • Safety-related cabinets and their electrical parts, such as relays and switches in nuclear power plants, should maintain continuous functioning, as well as structural safety according to the nuclear regulatory guidelines. Generally, an electrical part is qualified if its functioning is maintained without abnormality during excitement by motion compatible with the test response spectrum, which is larger than its in-cabinet response spectrum (ICRS). ICRS can be determined by shake-table test or dynamic analysis. Since existing cabinets in use can hardly be stopped and moved, dynamic analysis is preferred over shake-table test in determining ICRS. The simple method, suggested by the Electric Power Research Institute (EPRI) to determine ICRS, yields conservative or non-conservative results from time to time. In order to determine that the ICRS is better than EPRI method in a simple way, Ritz method considering global and local plate behaviors was suggested by Gupta et al. In this paper, the Ritz method is modified in order to consider the rocking and frame behaviors simultaneously, and it is applied to a simple numerical example for verification. ICRS is determined by Ritz method and compared with the results by finite element method (FEM). Based on this numerical example, recommendations for using Ritz method are suggested.

PERIODIC SENSING AND GREEDY ACCESS POLICY USING CHANNEL MODELS WITH GENERALLY DISTRIBUTED ON AND OFF PERIODS IN COGNITIVE NETWORKS

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.129-136
    • /
    • 2014
  • One of the fundamental issues in the design of dynamic spectrum access policy is the modeling of the dynamic behavior of channel occupancy by primary users. Under a Markovian modeling of channel occupancy, a periodic sensing and greedy access policy is known as one of the simple and practical dynamic spectrum access policies in cognitive radio networks. In this paper, the primary occupancy of each channel is modeled as a discrete-time alternating renewal process with generally distributed on- and off-periods. A periodic sensing and greedy access policy is constructed based on the general channel occupancy model. Simulation results show that the proposed policy has better throughput than the policies using channel models with exponentially distributed on- or off-periods.

Experimental Approach Method for Strcutural Dynamic Modification of Vibration Test Fixture (진동시험치구의 구조변경을 위한 실험적 접근법)

  • 김준엽;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.100-105
    • /
    • 1996
  • This paper proposes the method of experimental structural dynamic modification of fixture for environmental vibration test control. This method can predict the responses at any points on fixture utilizing the experimental data, and structural dynamic modification of fixture is made using the predicted responses for the spectra at the speciment attachment points to meet the specified reference spectrum. From the results of controlling the fixture before and after modification by conventional control method and optimal reference spectrum, which has been previously reported by the authors, the proposed method is shown to be an effective one.

  • PDF

Chaotic Behavior of a Double Pendulum Subjected to Follower Force (종동력을 받는 이중진자의 혼돈운동 연구)

  • 장안배;이재영
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.439-447
    • /
    • 1997
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower forces are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant, the initial impact forces acting at the end of the model are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, power density spectrum, and Poincare maps. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, direction control constant, and viscous damping, etc., are analysed. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF