• Title/Summary/Keyword: dynamic spectrum

Search Result 662, Processing Time 0.024 seconds

In-structure Response Evaluation of Shear Wall Structure via Shaking Table Tests (진동대 실험을 통한 전단벽 구조물의 층응답 특성 평가)

  • Jung, Jae-Wook;Ha, Jeong-Gon;Hahm, Daegi;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • After the manual shutdown of the Wolseong nuclear power plant due to an earthquake in Gyeongju in 2016, anxiety about the earthquake safety of nuclear power plants has become a major social issue. The shear wall structure used as a major structural element in nuclear power plants is widely used as a major structural member because of its high resistance to horizontal loads such as earthquakes. However, due to the complexity of the structure, it is challenging to predict the dynamic characteristics of the structure. In this study, a three-story shear wall structure is fabricated, and the in-structure response characteristics of the shear wall structure are evaluated through shaking table tests. The test is performed using the Gyeongju earthquake that occurred in 2016, and the response characteristics due to the domestic earthquake are evaluated.

A study on performance assessment of WEC rotor in the Jeju western waters

  • Poguluri, Sunny Kumar;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.361-380
    • /
    • 2018
  • The dynamic performance of the wave energy converter (WEC) rotor with different geometric parameters such as depth of submergence and beak angle has been assessed by considering the linear potential flow theory using WAMIT solver and along with the computational fluid dynamics (CFD). The effect of viscous damping is incorporated by conducting numerical free decay test using CFD. The hydrodynamic coefficients obtained from the WAMIT, viscous damping from the CFD and estimated PTO damping are used to solve the equation of motion to obtain the final pitch response, mean optimal power and capture width. The viscous damping is almost 0.9 to 4.6 times when compared to the actual damping. It is observed that by neglecting the viscous damping the pitch response and power are overestimated when compared to the without viscous damping. The performance of the pitch WEC rotor in the Jeju western coast at the Chagwido is analyzed using Joint North Sea Wave Project (JONSWAP) spectrum and square-root of average extracted power is obtained. The performance of WEC rotor with depth of submergence 2.8 m and beak angle $60^{\circ}$ found to be good compared to the other rotors.

Seismic performance of RC frame having low strength concrete: Experimental and numerical studies

  • Rizwan, Muhammad;Ahmad, Naveed;Khan, Akhtar Naeem
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.75-89
    • /
    • 2019
  • The paper presents experimental and numerical studies carried out on low-rise RC frames, typically found in developing countries. Shake table tests were conducted on 1:3 reduced scaled two-story RC frames that included a code conforming SMRF model and another non-compliant model. The later was similar to the code conforming model, except, it was prepared in concrete having strength 33% lower than the design specified, which is commonly found in the region. The models were tested on shake table, through multiple excitations, using acceleration time history of 1994 Northridge earthquake, which was linearly scaled for multi-levels excitations in order to study the structures' damage mechanism and measure the structural response. A representative numerical model was prepared in finite element based program SeismoStruct, simulating the observed local damage mechanisms (bar-slip and joint shear hinging), for seismic analysis of RC frames having weaker beam-column joints. A suite of spectrum compatible acceleration records was obtained from PEER for incremental dynamic analysis of considered RC frames. The seismic performance of considered RC frames was quantified in terms of seismic response parameters (seismic response modification, overstrength and displacement amplification factors), for critical comparison.

A hidden anti-jamming method based on deep reinforcement learning

  • Wang, Yifan;Liu, Xin;Wang, Mei;Yu, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3444-3457
    • /
    • 2021
  • In the field of anti-jamming based on dynamic spectrum, most methods try to improve the ability to avoid jamming and seldom consider whether the jammer would perceive the user's signal. Although these existing methods work in some anti-jamming scenarios, their long-term performance may be depressed when intelligent jammers can learn user's waveform or decision information from user's historical activities. Hence, we proposed a hidden anti-jamming method to address this problem by reducing the jammer's sense probability. In the proposed method, the action correlation between the user and the jammer is used to evaluate the hiding effect of the user's actions. And a deep reinforcement learning framework, including specific action correlation calculation and iteration learning algorithm, is designed to maximize the hiding and communication performance of the user synchronously. The simulation result shows that the algorithm proposed reduces the jammer's sense probability significantly and improves the user's anti-jamming performance slightly compared to the existing algorithms based on jamming avoidance.

Spin Axis Determination of Defunct GLONASS Satellites Using Photometry Observation

  • Lee, Jeeho;Park, Eunseo;Choi, Man-Soo;Kucharski, Daniel;Yi, Yu;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.45-53
    • /
    • 2021
  • GLONASS, a satellite navigation system developed in Russia since 1976, is defunct and orbits in an unstable attitude. The satellites in these problems are not managed and there is no precise information, which can increase the risk of collisions with other space objects. In this study, detailed attitude dynamic have to be analyzed through photometry data, which requires spin period and spin axis. The light curve data is obtained by observing through the photometer at the Graz station and the power spectrum is calculated to obtain the cycle of the satellite. The geometric relationship between observer and sun is analyzed for GLONASS-50 satellite. The box-wing model is applied to obtain the phase reflection of the satellite and obtain the Irradiation of the satellite through this information. In Light Curve and Irradiation, the spin axis is calculated for each peak points with the distance square minimum technique. The spin axis of the GLONASS-50 satellite is RA = 116°, Dec = 92°.

Seismic Responses of Multi-DOF Structures with Shallow Foundation Using Centrifuge Test (원심모형실험을 활용한 얕은 기초가 있는 다자유도 구조물의 지진응답)

  • Kim, Dong Kwan;Kim, Ho Soo;Kim, Jin Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • In this study, centrifuge model tests were performed to evaluate the seismic response of multi-DOF structures with shallow foundations. Also, elastic time history analysis on the fixed-base model was performed and compared with the experimental results. As a result of the centrifuge model test, earthquake amplification at the fundamental vibration frequency of the soil (= 2.44 Hz) affected the third vibration mode frequency (= 2.50 Hz) of the long-period structure and the first vibration mode (= 2.27 Hz) of the short-period structure. The shallow foundation lengthened the periods of the structures by 14-20% compared to the fixed base condition. The response spectrum of acceleration measured at the shallow foundation was smaller than that of free-field motion due to the foundation damping effect. The ultimate moment capacity of the soil-foundation system limited the dynamic responses of the multi-DOF structures. Therefore, the considerations on period lengthening, foundation damping, and ultimate moment capacity of the soil-foundation system might improve the seismic design of the multi-DOF building structures.

Seismic response evaluation of fixed jacket-type offshore structures by random vibration analysis

  • Abdel Raheem, Shehata E.;Abdel Aal, Elsayed M.;AbdelShafy, Aly G.A.;Fahmy, Mohamed F.M.
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • Offshore platforms in seismically active areas must be designed to survive in the face of intense earthquakes without a global structural collapse. This paper scrutinizes the seismic performance of a newly designed and established jacket type offshore platform situated in the entrance of the Gulf of Suez region based on the API-RP2A normalized response spectra during seismic events. A nonlinear finite element model of a typical jacket type offshore platform is constructed taking into consideration the effect of structure-soil-interaction. Soil properties at the site were manipulated to generate the pile lateral soil properties in the form of load deflection curves, based on API-RP2A recommendations. Dynamic characteristics of the offshore platform, the response function, output power spectral density and transfer functions for different elements of the platform are discussed. The joints deflection and acceleration responses demands are presented. It is generally concluded that consideration of the interaction between structure, piles and soil leads to higher deflections and less stresses in platform elements due to soil elasticity, nonlinearity, and damping and leads to a more realistic platform design. The earthquake-based analysis for offshore platform structure is essential for the safe design and operation of offshore platforms.

Influence of different parameters on nonlinear friction-induced vibration characteristics of water lubricated stern bearings

  • Lin, Chang-Gang;Zou, Ming-Song;Zhang, Hai-Cheng;Qi, Li-Bo;Liu, Shu-Xiao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.746-757
    • /
    • 2021
  • To investigate the mechanism of friction-induced vibration and noise of ship water lubricated stern bearings, a two-degree-of-freedom (2-DOF) nonlinear self-excited vibration model is established. The novelty of this work lies in the detailed analysis of influence of different parameters on the stability and nonlinear vibration characteristics of the system, which provides a theoretical basis for the various friction vibration and noise phenomenon and has a very important directive meaning for low noise design of water lubricated stern bearings. The results reveal that the change of any parameter, such as rotating speed of shaft, contact pressure, friction coefficient, system damping and stiffness, has an important influence on the stability and nonlinear response of the system. The vibration amplitudes of the system increase as (a) rotating speed of shaft, contact pressure, and the ratio of static friction coefficient to dynamic friction coefficient increase and (b) the transmission damping between motor and shaft decreases. The frequency spectrum of the system is modulated by the first mode natural frequency, which is continuous multi-harmonics of the first mode natural frequency. The response of the system presents a quasi-periodic motion.

Earthquake Responses of Nuclear Facilities Subjected to Non-vertically Incidental and Incoherent Seismic Waves (비수직 입사 비상관 지진파에 의한 원전 시설물의 지진 응답)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.237-246
    • /
    • 2022
  • Based on the random-vibration-theory methodology, dynamic responses of nuclear facilities subjected to obliquely incidental and incoherent earthquake ground motions are calculated. The spectral power density functions of the 6-degree-of-freedom motions of a rigid foundation due to the incoherent ground motions are obtained with the local wave scattering and wave passage effects taken into consideration. The spectral power density function for the pseudo-acceleration of equipment installed on a structural floor is derived. The spectral acceleration of the equipment or the in-structure response spectrum is then estimated using the peak factors of random vibration. The approach is applied to nuclear power plant structures installed on half-spaces, and the reduction of high-frequency earthquake responses due to obliquely incident incoherent earthquake ground motions is examined. The influences of local wave scattering and wave passage effects are investigated for three half-spaces with different shear-wave velocities. When the shear-wave velocity is sufficiently large like hard rock, the local wave scattering significantly affects the reduction of the earthquake responses. In the cases of rock or soft rock, the earthquake responses of structures are further affected by the incident angles of seismic waves or the wave passage effects.

Host Blood Transcriptional Signatures as Candidate Biomarkers for Predicting Progression to Active Tuberculosis

  • Chang Ho Kim;Gahye Choi;Jaehee Lee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.2
    • /
    • pp.94-101
    • /
    • 2023
  • A recent understanding of the dynamic continuous spectrum of Mycobacterium tuberculosis infection has led to the recognition of incipient tuberculosis, which refers to the latent infection state that has begun to progress to active tuberculosis. The importance of early detection of these individuals with a high-risk of progression to active tuberculosis is emphasized to efficiently implement targeted tuberculosis preventive therapy. However, the tuberculin skin test or interferon-γ release assay, which is currently used for the diagnosis of latent tuberculosis infection, does not aid in the prediction of the risk of progression to active tuberculosis. Thus, a novel test is urgently needed. Recently, simultaneous and systematic analysis of differentially expressed genes using a high-throughput platform has enabled the discovery of key genes that may serve potential biomarkers for the diagnosis or prognosis of diseases. This host transcriptional investigation has been extended to the field of tuberculosis, providing promising results. The present review focuses on recent progress and challenges in the field of blood transcriptional signatures to predict progression to active tuberculosis.