• Title/Summary/Keyword: dynamic shape control

Search Result 221, Processing Time 0.022 seconds

Target Object Search Algorithm under Dynamic Programming in the Tree-Type Maze (Dynamic Programming을 적용한 트리구조 미로내의 목표물 탐색 알고리즘)

  • Lee Dong-Hoon;Yoon Han-Ul;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.626-631
    • /
    • 2005
  • This paper presents the target object search algorithm under dynamic programming (DP) in the Tree-type maze. We organized an experimental environment with the concatenation Y-shape diverged way, small mobile robot, and a target object. By the principle of optimality, the backbone of DP, an agent recognizes that a given whole problem can be solved if the values of the best solution of certain ancillary problem can be determined according to the principle of optimality. In experiment, we used two different control algorithms: a left-handed method and DP. Finally we verified the efficiency of DP in the practical application using a real robot.

A study on the nine orifices -from horizontal and vertical views- (구규(九竅)에 대한 연구(硏究) -수평(水平)과 수직(垂直)의 관점을 위주로-)

  • Kang, Jung-Soo
    • Journal of Oriental Physiology
    • /
    • v.14 no.2 s.20
    • /
    • pp.11-21
    • /
    • 1999
  • In this paper the nine orifices were analyzed horizontally and vertically and the relationship between the upper seven orifices and lower two orifices was looked into specifically. The following results were obtained : l. Horizontal is the shenji (神機) which comes in and out, and it symbolizes animality based on heaven. so it is dynamic. Vertical is the qiji (氣機) which goes up and down. and it symbolizes vegetability based on earth. so it is static. 2. The shape of the eyes and lips is horizontal, so the shape of the liver and spleen which are related to the eyes and lips respectively is also horizontal. Thus the eyes and lips can move and the action of these are mainly concerned with the coming in and out of energy. 3. The shape of the nose and ears is vertical. so the shape of the lungs and kidneys which are related to the nose and ears respectively is also vertical. Thus the nose and ears remain still and the action of these are mainly concerned with going up and down of energy. 4. One means yang(陽) and two means yin(陰). so the nose and mouth which have one are yang. the eyes and ears which have two are yin. 5. The urethra consists of yangming(陽明) and taiyin(太陰) which control the front so it draws out urine which is yang(陽). The anus controls the back. so it draws out feces which is yin(陰). 6. The upper seven orifices are related to the five viscera which control immaterial spirit. The lower two orifices are related to the six bowels which control material movement.

  • PDF

Evaluation of Dynamic Characteristics for a Submerged Body with Large Angle of Attack Motion via CFD Analysis

  • Jeon, Myungjun;Mai, Thi Loan;Yoon, Hyeon Kyu;Ryu, Jaekwan;Lee, Wonhee;Ku, Pyungmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.313-326
    • /
    • 2021
  • A submerged body with varied control inputs can execute large drift angles and large angles of attack, as well as basic control such as straight movement and turning. The objective of this study is to analyze the dynamic characteristics of a submerged body comprising six thrusters and six control planes, which is capable of a large drift angle and angle of attack motion. Virtual captive model tests via were analyzed via computational fluid dynamics (CFD) to determine the dynamic characteristics of the submerged body. A test matrix of virtual captive model tests specialized for large-angle motion was established. Based on this test matrix, virtual captive model tests were performed with a drift angle and angle of attack of approximately 30° and 90°, respectively. The characteristics of the hydrodynamic force acting on the horizontal and vertical surfaces of the submerged body were analyzed under the large-angle motion condition, and a model representing this hydrodynamic force was established. In addition, maneuvering simulation was performed to evaluate the standard maneuverability and dynamic characteristics of large-angle motion. Considering the shape characteristics of the submerged body, we attempt to verify the feasibility of the analysis results by analyzing the characteristics of the hydrodynamic force when the large-angle motion occurred.

A Study on the Impact Force Reconstruction (충격력 재현에 관한 연구)

  • 조창기;이규섭;류봉조;이종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.949-953
    • /
    • 1996
  • Force shape control for impact test is required in order to simulate dynamic reponse of structures which is subjected to impact force. In this paper, the mechanisms of contact and impact force generation are analyzed and tested with a simple test equipment. It was carried out for the pre-design of impact force reconstruction apparatus.

  • PDF

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.

A pressure tracking controller for hydroforming process (하이드로 포밍 공정의 압력 추종제어에 관한 연구)

  • 박희재;조형석;현봉섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.317-323
    • /
    • 1987
  • A pressure tracking control of hydroforming processes, which is used in the precision forming of. sheet metals, is considered in this paper. The hydroforming of sheet metal is performed between the high-pressure chamber controlled by pressure control valve and the punch moving with constant speed. Since the pressure in the forming chamber is a critical factor to the quality of the product severely. It is important to control the pressure to follow a prescribed pressure trajectory, depending upon the material volume and shape of the parts to be formed. Taking into consideration of the volume chamge of forming chamber during the process and the nonlinearity of the electro-magnetic relief valve, a mathematical formulation of the model describing the dynamic characteristics of this model obtained. Based upon this model a PID controller is designed for the pressure tracking.

  • PDF

Analysis and Control of the Flexible Multibody System Using MATLAB (MATLAB을 이용한 유연 다물체 시스템의 해석 및 제어)

  • Jung, Sung-Pil;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, analysis and control of the flexible multibody system using MATLAB is presented. The equations of motion of a flexible body are derived in terms of the modal coordinate. The rigid-flexible multibody dynamic solver is developed. Finite element information required to analyze motion of flexible bodies is imported from ANSYS. The modified finite element data, such as modal mass matrix, modal stiffness matrix and constraint mode shapes, is calculated in the solver. Since the solver is developed using MATLAB, it is very easy to connect with SIMULINK which is widely used to control motion of the multibody system. Several simulations are implemented to verify the developed solver. A control example is carried out and the usefulness of the developed solver is demonstrated.

Design of Fuzzy Logic Controller for Robot Manipulators in the VSS Control Scheme

  • Yi, Soo-Yeong;Chung, Myung-Jin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1207-1210
    • /
    • 1993
  • There is an opinion of regarding a simple fuzzy logic controller as a kind of Variable Structure Controller in recent years. The opinion may provide an analytical basis which describes the robustness to uncertainty and the stability of a fuzzy logic controller. So in this paper, a fuzzy logic controller based on the Variable Structure System with is designed for a robot manipulator which is a class of complex, nonlinear system with uncertainty. Fuzzy control rules, membership shape of the I/O variables of the fuzzy logic controller are designed for guaranteeing the stability of an overall control system. From a computer simulation of dynamic control of a two link robot manipulator, the design procedure of the fuzzy logic controller is validated.

  • PDF

System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network (신경회로망을 이용한 AUV의 시스템 동정화 및 응용)

  • 이판묵;이종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구)

  • Park, Hyung-Ju;Kim, Li-Na;Heo, Jun-Young;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.213-217
    • /
    • 2011
  • Unsteady numerical simulations of pintle nozzles were implemented for solid rocket thrust vector control. The variation of pintle location was considered using unsteady numerical techniques, and dynamic characteristics of various pintle models were investigated. In order to consider the variation of the pintle location, a moving mesh method was applied. The effects of shape and location of the pintle nozzle have been analytically investigated. And the results were compared with numerical results. The chamber pressure, mass flow and thrust are analyzed to take account dynamic characteristics of pintle performance.

  • PDF