• Title/Summary/Keyword: dynamic scheduling system

Search Result 254, Processing Time 0.023 seconds

Electric Bill Minimization Model and Economic Assessment of Battery Energy Storage Systems Installed in a Non-residential Customer (비주거용 소비자 전력요금최소화 목적 BESS 최적운영 및 경제성 평가)

  • Park, Yong-Gi;Kwon, Kyoung-Min;Lim, Sung-Soo;Park, Jong-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1347-1354
    • /
    • 2016
  • This paper presents optimal operational scheduling model and economic assessment of Li-ion battery energy storage systems installed in non-residential customers. The operation schedule of a BESS is determined to minimize electric bill, which is composed of demand and energy charges. Dynamic programming is introduced to solve the nonlinear optimization problem. Based on the optimal operation schedule result, the economics of a BESS are evaluated in the investor and the social perspective respectively. Calculated benefits in the investor or customer perspective are the savings of demand charge, energy charge, and related taxes. The social benefits include fuel cost savings of generating units, construction deferral effects of the generation capacity and T&D infra, and incremental CO2 emission cost impacts, etc. Case studies are applied to an large industrial customer that shows similarly repeated load patterns according to days of the week.

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

Application Study of FQ-CoDel Algorithm based on QoS-guaranteed Class in Tactical Network (전술환경에서 QoS 보장을 위한 클래스 기반 FQ-Codel 알고리즘 적용 연구)

  • Park, Juman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.53-58
    • /
    • 2019
  • This paper proposes a class-based FQ-CoDel(Flow Queue-Control Delay) algorithm. A variety of application system services create bottlenecks in tactical communication network and the bottlenecks cause some problems such as traffic loss and delay. Therefore, more research on effective traffic processing is needed. The proposed class-based FQ-CoDel algorithm, suggests dynamic buffer management and scheduling, classifies specific packets in each queue according to service attribute and criticality and checks periodically latency of the packets in each queue. Also, it abandons the packets if some packets stay in queue above schedule time and manages the total amount of traffic stored in queue with certain level.

Selection of Machine Learning Techniques for Network Lifetime Parameters and Synchronization Issues in Wireless Networks

  • Srilakshmi, Nimmagadda;Sangaiah, Arun Kumar
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.833-852
    • /
    • 2019
  • In real time applications, due to their effective cost and small size, wireless networks play an important role in receiving particular data and transmitting it to a base station for analysis, a process that can be easily deployed. Due to various internal and external factors, networks can change dynamically, which impacts the localisation of nodes, delays, routing mechanisms, geographical coverage, cross-layer design, the quality of links, fault detection, and quality of service, among others. Conventional methods were programmed, for static networks which made it difficult for networks to respond dynamically. Here, machine learning strategies can be applied for dynamic networks effecting self-learning and developing tools to react quickly and efficiently, with less human intervention and reprogramming. In this paper, we present a wireless networks survey based on different machine learning algorithms and network lifetime parameters, and include the advantages and drawbacks of such a system. Furthermore, we present learning algorithms and techniques for congestion, synchronisation, energy harvesting, and for scheduling mobile sinks. Finally, we present a statistical evaluation of the survey, the motive for choosing specific techniques to deal with wireless network problems, and a brief discussion on the challenges inherent in this area of research.

Systematic Transmission Method of Industrial IEEE 802.15.4 for Real-time Mixed Traffic (실시간 혼합 트래픽 전송을 위한 산업용 IEEE 802.15.4 망의 체계적 전송 기법)

  • Kim, Dong-Sung;Lee, Jung-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.18-26
    • /
    • 2008
  • In this paper, dynamic GTS scheduling method based on IEEE 802.15.4 is proposed for wireless control system considering reliability and real-time property. The proposed methods can guarantee a transmission of real-time periodic and sporadic data within the limited time frame in factory environment. The superframe of IEEE 802.15.4 is used for the dynamic transmission method of real-time mixed traffic (periodic data, sporadic data, and non real-time message). By separating CFP and CAP properly, the periodic, sporadic, and non real-time messages are transmitted effectively and guarantee real-time transmission within a deadline. The simulation results show the improvement of real-time performance of periodic and sporadic data at the same time.

Optimal Supply Chain formation using Agent Negotiation in SET Model based Make-To-Order (최적 공급사슬 구성을 위한 에이전트 협상방법론 개발)

  • Kim Hyun-Soo;Cho Jae-Hyung;Choi Hyung-Rim;Hong Soon-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.2
    • /
    • pp.99-123
    • /
    • 2006
  • In an effect to composite an optimal supply chain, this study has introduced an agent-based negotiation as a method to assign a lot of orders to a large number of participants. As a resources allocation mechanism to form a strategic cooperation based on information sharing between supply chain members(buyers, manufacturers, suppliers), this agent negotiation provides coordination functions allowing all participants to make a profit and accomplishing Pareto optimum solution from the viewpoint of a whole supply chain. A SET model-based scheduling takes into consideration both earliness production cost and tardiness production cost, along with a competitive relationship between multiple participants. This study has tried to prove that the result of an agent-based negotiation is a Pareto optimal solution under the dynamic supply chain environment, establishing the mathematical formulation for a performance test, and making a comparison with the heuristic Branch & Bound method.

  • PDF

Scheduling System using CSP leer Effective Assignment of Repair Warrant Job (효율적인 A/S작업 배정을 위한 CSP기반의 스케줄링 시스템)

  • 심명수;조근식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.247-256
    • /
    • 2000
  • 오늘날의 기업은 상품을 판매하는 것 뿐만 아니라 기업의 신용과 이미지를 위해 그 상품에 대한 사후처리(After Service) 업무에 많은 투자를 하고 있다. 이러한 양질의 사후서비스를 고객에게 공급하기 위해서는 많은 인력을 합리적으로 관리해야 하고 요청되는 고장수리 서비스 업무를 빠르게 해결하기 위해서는 업무를 인력들에게 합리적으로 배정을 하고 회사의 비용을 최소화하면서 정해진 시간에 요청된 작업을 처리하기 위해서는 인력들에게 작업을 배정하고 스케줄링하는 문제가 발생된다. 본 논문에서는 이러한 문제를 해결하기 위해 화학계기의 A/S 작업을 인력에게 합리적으로 배정하는 스케줄링 시스템에 관한 연구이다. 먼저 스케줄링 모델을 HP 사의 화학분석 및 시스템을 판매, 유지보수 해 주는 "영진과학(주)"회사의 작업 스케줄을 분석하여 필요한 도메인과 고객서비스전략과 인력관리전략에서 제약조건을 추출하였고 여기에 스케줄링 문제를 해결하기 위한 방법으로 제약만족문제(CSP) 해결기법인 도메인 여과기법을 적용하였다. 도메인 여과기법은 제약조건에 의해 변수가 갖는 도메인의 불필요한 부분을 여과하는 것으로 제약조건과 관련되어 있는 변수의 도메인이 축소되는 것이다. 또한, 스케줄링을 하는데에 있어서 비용적인 측면에서의 스케줄링방법과 고객 만족도에서의 스케줄링 방법을 비교하여 가장 이상적인 해를 찾는데 트래이드오프(Trade-off)를 이용하여 최적의 해를 구했으며 실험을 통해 인력에게 더욱 효율적으로 작업들을 배정 할 수 있었고 또한, 정해진 시간에 많은 작업을 처리 할 수 있었으며 작업을 처리하는데 있어 소요되는 비용을 감소하는 결과를 얻을 수 있었다. 검증하였다.를, 지지도(support), 신뢰도(confidence), 리프트(lift), 컨빅션(conviction)등의 관계를 통해 다양한 방법으로 모색해본다. 이 연구에서 제안하는 이러한 개념계층상의 흥미로운 부분의 탐색은, 전자 상거래에서의 CRM(Customer Relationship Management)나 틈새시장(niche market) 마케팅 등에 적용가능하리라 여겨진다.선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity

  • PDF

Rate-Monotonic Scheduler with Extended Schedulability Inspection for Hard Real-Time Tesk (경성 실시간 태스크를 위한 확장된 스케줄 가능성 검사를 갖는 비율단조 스케줄러)

  • 신동헌;조수현;김영학;김태형
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.2
    • /
    • pp.50-60
    • /
    • 2004
  • Recently, most of the embedded system is required not only many functions but also real-time characteristics in purpose. In the hard real-time system, especially, strict deadline of periodic task can affect the performance of the system. In this paper, we design and implement the scheduler based on RM(Rate-Monotonic) rule. This scheduler makes feasible patterns based on EDF(Earliest deadline first) rule with extended schedulability inspection before execution, for periodic task-set that has high CPU utilization and then, execute periodic task-set depended on feasible patterns. The feasible pattern formed into EDF rule is capable of the efficiency of CPU up to 100 percentage and by the referenced execution of the feasible pattern is possible of removing the red-time scheduling overhead that is the defect of the order of dynamic assignment rule.

  • PDF

Moving Mass Actuated Reentry Vehicle Control Based on Trajectory Linearization

  • Su, Xiao-Long;Yu, Jian-Qiao;Wang, Ya-Fei;Wang, Lin-lin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • The flight control of re-entry vehicles poses a challenge to conventional gain-scheduled flight controllers due to the widely spread aerodynamic coefficients. In addition, a wide range of uncertainties in disturbances must be accommodated by the control system. This paper presents the design of a roll channel controller for a non-axisymmetric reentry vehicle model using the trajectory linearization control (TLC) method. The dynamic equations of a moving mass system and roll control model are established using the Lagrange method. Nonlinear tracking and decoupling control by trajectory linearization can be viewed as the ideal gain-scheduling controller designed at every point along the flight trajectory. It provides robust stability and performance at all stages of the flight without adjusting controller gains. It is this "plug-and-play" feature that is highly preferred for developing, testing and routine operating of the re-entry vehicles. Although the controller is designed only for nominal aerodynamic coefficients, excellent performance is verified by simulation for wind disturbances and variations from -30% to +30% of the aerodynamic coefficients.

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.