• Title/Summary/Keyword: dynamic scheduling system

Search Result 254, Processing Time 0.029 seconds

Dynamic Allocation Method of CPU Bandwidth for Hard Real-Time Task and Multimedia Task Based on MPEG Video Stream (경성 실시간 태스크와 MPEG 비디오 스트림 기반 멀티미디어 태스크를 위한 CPU 대역폭의 동적 할당 기법)

  • Kim, Jin-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.7
    • /
    • pp.886-895
    • /
    • 2004
  • In this paper, we propose the dynamic allocation scheme of the CPU bandwidth to efficiently integrate and schedule these tasks in the same system, where multimedia tasks and hard real-time tasks can coexist simultaneously. Hard real-time tasks are guaranteed based on worst case execution times, whereas multimedia tasks modeled as soft real-time tasks are served based on mean parameters. This paper describes a server-based allocation scheme for assigning the CPU resource to two types of tasks. Especially for MPEG video streams, we show how to dynamically control the fraction of the CPU bandwidth allocated to each multimedia task. The primary purpose of the proposed method is to minimize the mean tardiness of multimedia tasks while satisfying the timing constraints of hard real-time tasks present in the system. We showed through simulations that the tardiness experienced by multimedia tasks under the proposed allocation scheme is much smaller than that experienced by using other scheme.

  • PDF

Design and Implementation of Real-Time Operating System for a GPS Navigation Computer (GPS 항법 컴퓨터를 위한 실시간 운영체제의 설계 및 구현)

  • Bae, Jang-Sik;Song, Dae-Gi;Lee, Cheol-Hun;Song, Ho-Jun
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.429-438
    • /
    • 2001
  • GPS (Global Positioning System) is the most ideal navigation system which can be used on the earth irrespective of time and weather conditions. GPS has been used for various applications such as construction, survey, environment, communication, intelligent vehicles and airplanes and the needs of GPS are increasing in these days. This paper deals with the design and implementation of the RTOS (Real-Time Operating System) for a GPS navigation computer in the GPS/INS integrated navigation system. The RTOS provides the optimal environment for execution and the base platform to develop GPS application programs. The key facilities supplied by the RTOS developed in this paper are priority-based preemptive scheduling policy, dynamic memory management, intelligent interrupt handling, timers and IPC, etc. We also verify the correct operations of all application tasks of the GPS navigation computer on the RTOS and evaluate the performance by measuring the overhead of using the RTOS services.

  • PDF

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

A GoP-based Dynamic Transmission Scheduling for supporting Fast Scan Functions with m-times playback rate in Video-On-Demand (주문형 비디오에서 m배속 고속 재생을 위한 GoP 기반 동적 전송 스케줄 작성)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1643-1651
    • /
    • 1999
  • Video-On-Demand (VOD) is expected to provide the user with interactive operations such as VCR functions. In particular, fast scan functions like “Fast Forward” of “Fast Backward” for a certain speedup playback are required. Since they require a significant amount of system resources, schemes to reduce bandwidth requirements for the network or disk are needed. In MPEG standard, Group-of-Pictures (GoP) is a random access unit which can be decoded independently. Since storing and transmitting a video stream based on GoP is efficient, it is practical to support fast scan functions based on GoP. In this paper, we present a dynamic transmission scheduling scheme to support fast scan functions with m-times normal playback rate for a stored video. The proposed scheme writes a transmission schedule whenever user requests a fast scan function. That is, the scheme constructs the data set to be smoothed by skipping GoPs according to a given speedup factor, and then writes the transmission schedule by applying a bandwidth smoothing. Finally, the scheme restarts the transmission of video data to a client according to the new schedule. The proposed scheme results in speeding up the playback rate by utilizing “GoP skipping”, and then reduces the computational overhead by applying a bandwidth smoothing based on GoP.

  • PDF

Cloud-Based Automation System to Process Data from Astronomy Observation (대용량 천문 관측 자료처리를 위한 클라우드 기반 자동화 시스템)

  • Yeom, Jae-Keun;Yu, Jung-Lok;Yim, Hong-Suh;Kim, Myung-Jin;Park, Jintae;Lee, Hee-Jae;Moon, Hong-Kyu;Choi, Young-Jun;Roh, Dong-Goo;Oh, Young-Seok;Bae, Young-Ho
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.45-56
    • /
    • 2017
  • In astronomy, the amount of data generated using wide-field optical telescope has increased exponentially. However, the fixed-size small-scale computing environment and the complexity of data analysis tools, results in difficulties to process the massive observation data collected. To resolve this problem, we propose a cloud-based automation system for the efficient processing of the enormous data gathered. The proposed system consists of a Workflow Execution Manager which manages various workflow templates and controls the execution of workflows instantiated from theses templates, and an Elastic Resource Manager that dynamically adds/deletes computing resources, according to the amount of data analysis requests. To show the effectiveness of our proposed system, we exhaustively explored a board spectrum of experiments, like elastic resources allocation, system load, etc. Finally, we describe the best practice case of DEEP-SOUTH scheduling system as an example application.

Design of Operating System for Wireless Sensor Nodes with Enhanced Remote Code Update Functionality (원격 코드 업데이트가 가능한 무선 센서 노드용 운영체제)

  • Kim, Chang-Hoon;Cha, Jeong-Woo;Kim, Il-Hyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 2011
  • Sensor networks monitor the environment, collect sensed data, and relay the data back to a collection point. Although sensor nodes have very limited hardware resources, they require an operating system that can provide efficient resource management and various application environments. In addition, the wireless sensor networks require the code update previously deployed to patch bugs in program and to improve performance of kernel service routines and application programs. This paper presents EPRCU (Easy to Perform Remote Code Update), a new operating system for wireless sensor nodes, which has enhanced functionalities to perform remote code update. To achieve an efficient code update, the EPRCU provides dynamic memory allocation and program memory management. It supports the event-driven kernel, which uses priority-based scheduling with the application of aging techniques. Therefore, the proposed operating system is not only easy to perform wireless communication with the remote code update but also suitable for various sensor network applications.

Inter-Cell Interference Management for Next-Generation Wireless Communication Systems

  • Kwon, Ho-Joong;Ko, Soo-Min;Seo, Han-Byul;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.258-267
    • /
    • 2008
  • In this paper, we examine what changes the next-generation wireless communication systems will experience in terms of the technologies, services, and networks and, based on that, we investigate how the inter-cell interference management should evolve in various aspects. We identify that the main driving forces of the future changes involve the data-centric services, new dynamic service scenarios, all-IP core access networks, new physical-layer technologies, and heavy upload traffic. We establish that in order to cope with the changes, the next-generation inter-cell interference management should evolve to 1) set the objective of providing a maximal data rate, 2) take the form of joint management of power allocation and user scheduling, 3) operate in a fully distributed manner, 4) handle the time-varying channel conditions in mobile environment, 5) deal with the changes in interference mechanism triggered by the new physical-layer technologies, and 6) increase the spectral efficiency while avoiding centralized coordination of resource allocation of the users in the uplink channel.

Assessment of Position Degradation Due to Intermittent Broadcast of RTK MSM Correction Under Various Conditions

  • Yoon, Hyo Jung;Lim, Cheol soon;Park, Byungwoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.237-248
    • /
    • 2020
  • GNSS has been evolving dramatically in recent years. There are currently 6 GNSS (4 GNSS, AND 2 RNSS) constellations, which are GPS (USA), GLONASS (Russia), BeiDou (China), Galileo (EU), QZSS (Japan), and IRNSS (India). The Number of navigation satellites is expected to be over 150 by 2020. As the number of both constellations and satellites used for the improvement of positioning performance, high accuracy, and robustness of precise positioning is more promising. However, a large amount of the correction messages is required to support the augmentation system for the available satellites of all the constellations. Since bandwidth for the correction messages is generally limited, sending or scheduling the correction messages might be a critical issue in the near future. In this study, we analyze the relationship between the size of the bandwidth and Real-Time Kinematics (RTK) performance. Multiple Signal Messages (MSM), the only Radio Technical Commission for Maritimes (RTCM) message that supports multi-constellation GNSS, has been used for this assessment. Instead of the conventional method that broadcasts all the messages at the same time, we assign the MSM broadcasting interval for each constellation in 5 seconds. An open sky static and dynamic test for this study was conducted on the roof of Sejong University. Our results show that the RTK fixed position accuracy is not affected by the 5-second interval corrections, but the ambiguity fixing rate is degraded for poor DOP cases when RTK correction are transmitted intermittently.

Design of a PC based Real-Time Software GPS Receiver (PC기반 실시간 소프트웨어 GPS 수신기 설계)

  • Ko, Sun-Jun;Won, Jong-Hoon;Lee, Ja-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.286-295
    • /
    • 2006
  • This paper presents a design of a real-time software GPS receiver which runs on a PC. The software GPS receiver has advantages over conventional hardware based receivers in terms of flexibility and efficiency in application oriented system design and modification. In odor to reduce the processing time of the software operations in the receiver, a shared memory structure is used with a dynamic data control, and the byte-type IF data is processed through an Open Multi-Processing technique in the mixer and integrator which requires the most computational load. A high speed data acquisition device is used to capture the incoming high-rate IF signals. The FFT-IFFT correlation technique is used for initial acquisition and FLL assisted PLL is used for carrier tracking. All software modules are operated in sequence and are synchronized with pre-defined time scheduling. The performance of the designed software GPS receiver is evaluated by running it in real-time using the real GPS signals.

Global Internet Computing Environment based on Java (자바를 기반으로 한 글로벌 인터넷 컴퓨팅 환경)

  • Kim, Hui-Cheol;Sin, Pil-Seop;Park, Yeong-Jin;Lee, Yong-Du
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2320-2331
    • /
    • 1999
  • Over the Internet, in order to utilize a collection of idle computers as a parallel computing platform, we propose a new scheme called GICE(Global Internet Computing Environment). GICE is motivated to obtain high programmability, efficient support for heterogeneous computing resources, system scalability, and finally high performance. The programming model of GICE is based on a single address space. GICE is featured with a Java based programming environment, a dynamic resource management scheme, and efficient parallel task scheduling and execution mechanisms. Based on a prototype implementation of GICE, we address the concept, feasibility, complexity and performance of Internet computing.

  • PDF