• Title/Summary/Keyword: dynamic reliability model

Search Result 376, Processing Time 0.024 seconds

A Study on A Dynamic Reliability Analysis Model (동적신뢰도 평가모델의 연구)

  • 제무성
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.239-246
    • /
    • 2000
  • This paper presents a new dynamic approach for assessing feasibility associated with the implementation of accident management strategies by the operators. This approach includes the combined use of both the concept of reliability physics and a dynamic event tree generation scheme. The reliability physics is based on the concept of a comparison between two competing variables, i.e., the requirement and the achievement parameter, while the dynamic event tree generation scheme on the continuous generation of the possible event sequences at every branch point up to the desired solution. This approach is applied to a cavity flooding strategy in a reference plant, which is to supply water into the reactor cavity using emergency fire systems in the station blackout sequence. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the requirement parameter. It has been demonstrated that this combined methodology may contribute to assessing the success likelihood of the operator actions required during accidents and therefore to developing the accident management procedures.

  • PDF

Dynamic data validation and reconciliation for improving the detection of sodium leakage in a sodium-cooled fast reactor

  • Sangjun Park;Jongin Yang;Jewhan Lee;Gyunyoung Heo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1528-1539
    • /
    • 2023
  • Since the leakage of sodium in an SFR (sodium-cooled fast reactor) causes an explosion upon reaction with air and water, sodium leakages represent an important safety issue. In this study, a novel technique for improving the reliability of sodium leakage detection applying DDVR (dynamic data validation and reconciliation) is proposed and verified to resolve this technical issue. DDVR is an approach that aims to improve the accuracy of a target system in a dynamic state by minimizing random errors, such as from the uncertainty of instruments and the surrounding environment, and by eliminating gross errors, such as instrument failure, miscalibration, or aging, using the spatial redundancy of measurements in a physical model and the reliability information of the instruments. DDVR also makes it possible to estimate the state of unmeasured points. To validate this approach for supporting sodium leakage detection, this study applies experimental data from a sodium leakage detection experiment performed by the Korea Atomic Energy Research Institute. The validation results show that the reliability of sodium leakage detection is improved by cooperation between DDVR and hardware measurements. Based on these findings, technology integrating software and hardware approaches is suggested to improve the reliability of sodium leakage detection by presenting the expected true state of the system.

Analysis of Flexible Media Behavior by Dynamic Elastica (Dynamic Elastica에 의한 유연매체의 거동해석)

  • Hong, Sung-Kwon;Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.600-605
    • /
    • 2004
  • In many machines handling lightweight and flexible media such as magnetic tape drives, xerographic copiers and sewing machines, the media must transit an open space. It is important to predict the static and dynamic behavior of the sheets with a high degree of reliability. The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite differential method. The parametric cubic curve is applied for defining the guide shape. The dynamic contact conditions suggested by Klarbring is used to predict the direction of the flexible media according to the initial velocity and the friction coefficient. The analysis is also compared to the conventional model, showing that after contacting a $45^{\circ}$ wall, the directions of flexible media of two models are different.

  • PDF

Calculation of Dynamic Stress-Time History for a Vehicle Using Flexible Body Dynamics Model (유연체 동력학 모델을 이용한 차량의 동응력-시간선도 계산)

  • Park, Chan-Jong;Yim, Hong-Jae;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.702-707
    • /
    • 2000
  • Under the rapid change of a new vehicle model, it is necessary to develop a durability analysis technique using computer simulation. In order to do this. reliable dynamic stress-time history for the vehicle components must be calculated on various road conditions. In this paper, a full vehicle simulation model which is composed of flexible frame and chassis components is proposed and verified its reliability from the comparison with field test data. Finally, dynamic stress-time history on the rear chassis components is predicted with hybrid and modal superposition method.

  • PDF

Estimating Strain Rate Dependent Parameters of Cowper-Symonds Model Using Electrohydraulic Forming and Artificial Neural Network (액중 방전 성형과 인공신경망 기법을 활용한 Cowper-Symonds 구성 방정식의 변형률 속도 파라메터 역추정)

  • Byun, H.B.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2022
  • Numerical analysis and dynamic material properties are required to analyze the behavior of workpiece during an electrohydraulic forming (EHF) process. In this study, EHF experiments were conducted under three conditions (6, 7, 8 kV). Dynamic material properties of Al 5052-H34 were inversely estimated through an ANN (Artificial Neural Network) model constructed based on LS-Dyna analysis results. Parameters of Cowper-Symonds constitutive equation, C and p, were used to implement dynamic material properties. By comparing experimental results of three conditions with ANN model results, optimized parameters were obtained. To determine the reliability of the derived parameters, experimental results, LS-Dyna analysis results, and ANN results of three conditions were compared using MSE and SMAPE. Valid parameters were obtained because values of indicators were within confidence intervals.

Design Modification of Bearing Walkout of Water Pump by a Finite Element Analysis (유한요소해석을 이용한 워터펌프 베어링돌출 설계 개선)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2006
  • A systematic methodology has been proposed to establish a reliable design of water pump system. A simplified steady-state dynamic model of water pump system has been developed to study the response of water pump system to the dynamic load mainly due to the run-out and unbalance. Design modifications are needed to strengthen the structural integrity of existing designs. Increasing the natural frequency of system is pursued to prevent a resonance from occurring in the engine excitation range. A computational reliability methodology combined with finite element analysis is used to identify the most significant factor affecting the system performance. This method considered influence of design control parameters for the performance of design. By including control factors to the system model in a systematic way, more reliable design is expected.

Vibration Analysis Model Development of the Solid Axles (일체형 차축의 진동 해석 모델 개발)

  • Jun, Kab-Jin;Choi, Sung-Jin;Park, Tae-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.147-150
    • /
    • 2005
  • The torsion beam axle type is widely used in the rear suspension for small passenger car because of low cost, good performance and etc. The FE and dynamic analysis using the computer are very helpful for the efficiency of the torsion beam design. First of all, the reliability on the computational model must be verified for the analysis. In this study, The FE model of the torsion beam was verified according to comparison with he test data. And after making the flexible body using the FE model, the dynamic characteristic of the tubular type torsion beam axles was compared with that of the V-beam type.

  • PDF

Reliability Evaluation of a Distribution System with wind Turbine Generators Based on the Switch-section Partitioning Method

  • Wu, Hongbin;Guo, Jinjin;Ding, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.575-584
    • /
    • 2016
  • Considering the randomness and uncertainty of wind power, a reliability model of WTGs is established based on the combination of the Weibull distribution and the Markov chain. To analyze the failure mode quickly, we use the switch-section partitioning method. After defining the first-level load zone node, we can obtain the supply power sets of the first-level load zone nodes with each WTG. Based on the supply sets, we propose the dynamic division strategy of island operation. By adopting the fault analysis method with the attributes defined in the switch-section, we evaluate the reliability of the distribution network with WTGs using a sequential Monte Carlo simulation method. Finally, using the IEEE RBTS Bus6 test system, we demonstrate the efficacy of the proposed model and method by comparing different schemes to access the WTGs.

Comprehensive Cumulative Shock Common Cause Failure Models and Assessment of System Reliability (포괄적 누적 충격 공통원인고장 모형 및 시스템 신뢰도 평가)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.320-328
    • /
    • 2011
  • This research proposes comprehensive models for analyzing common cause failures (CCF) due to cumulative shocks and to assess system reliability under the CCF. The proposed cumulative shock models are based on the binomial failure rate (BFR) model. Six kinds of models are proposed so as to explain diverse cumulative shock phenomena. The models are composed of the initial failure probability, shape parameter, and the total shock number. Some parameters of the proposed models can not be explicitly estimated, so we adopt the Expectation-maximization (EM) algorithm in order to obtain the maximum likelihood estimator (MLE) for the parameters. By estimating the parameters for the cumulative shock models, the system reliability with CCF can be assessed sequentially according to the number of cumulative shocks. The result can be utilizes in dynamic probabilistic safety assessment (PSA), aging studies, or risk management for nuclear power plants. Replacement or maintenance policies can also be developed based on the proposed model.

Reliability based seismic fragility analysis of bridge

  • Kia, M.;Bayat, M.;Emadi, A.;Kutanaei, S. Soleimani;Ahmadi, H.R
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • In this paper, a reliability-based approach has been implemented to develop seismic analytical fragility curves of highway bridges. A typical bridge class of the Central and South-eastern United States (CSUS) region was selected. Detailed finite element modelling is presented and Incremental Dynamic Analysis (IDA) is used to capture the behavior of the bridge from linear to nonlinear behavior. Bayesian linear regression method is used to define the demand model. A reliability approach is implemented to generate the analytical fragility curves and the proposed approach is compared with the conventional fragility analysis procedure.