• Title/Summary/Keyword: dynamic performance analysis

Search Result 3,050, Processing Time 0.041 seconds

Vibration Analysis of Boring Bar with Dynamic Vibration Absorber (동흡진기형 보링바의 진동해석)

  • Lee, Jae-Hyuk;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1796-1802
    • /
    • 2000
  • The purpose of this work is to analyze the vibration characteristic of boring bar with dynamic vibration absorber and find out the effective design parameters. Using the finite element method and modified optimum design concept, conventional optimum design based on approximate lumped parameter model is checked and practical design to be measured with modal analysis is compared with optimum design from numerical analysis. Also, the performance of reducing vibration is investigated with variation of shape of boring bar. The considered model of boring bar with dynamic vibration absorber is selected among manufactured boring bars with the best performance.

  • PDF

Dynamic Analysis of Single-Effect/Double-Lift Libr-Water Absorption System using Low-Temperature Hot Water (저온수를 이용하는 일중효용/이단승온 리튬브로마이드-물 흡수식 시스템의 동적 해석)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.695-702
    • /
    • 2009
  • Dynamic behavior of Libr-water absorption system using low-temperature hot water was investigated numerically. Thermal-hydraulic model of single-effect/double-lift 100 RT chiller was developed by applying transient conservation equations of total mass, Libr mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analysis were performed to quantify the effects of bulk concentration and part-load operation on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum bulk concentration was found to exist, which resulted in the minimum time constant with stable cooling capacity. COP and time constant increased as the load decreased down to 40%, below which the time constant increased abruptly and COP decreased as the load decreased further.

A Parameter Study for Static and Dynamic Denting

  • Jung, Dong-Won;Worswick, M.J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2009-2020
    • /
    • 2004
  • A parametric study of the factors controlling static and dynamic denting, as well as local stiffness, has been made on simplified panels of different sizes, curvatures, thicknesses and strengths. Analyses have been performed using the finite element method to predict dent resistance and panel stiffness. A parametric approach is used with finite element models of simplified panels. Two sizes of panels with square plan dimensions and a wide range of curvatures are analysed for several combinations of material thickness and strength, all representative of auto-motive closure panels. Analysis was performed using the implicit finite element code, LS-NIKE, and the explicit dynamic code, LS-DYNA for the static and dynamic cases, respectively. Panel dent resistance and stiffness behaviour are shown to be complex phenomena and strongly interrelated. Factors favouring improved dent resistance include increased yield strength and panel thickness. Panel stiffness also increases with thickness and with higher curvatures but decreases with size and very low curvatures. Conditions for best dynamic and static dent performance are shown to be inherently in conflict ; that is, panels with low stiffness tend to perform well under impact loading but demonstrate inferior static dent performance. Stiffer panels are prone to larger dynamic dents due to higher contact forces but exhibit good static performance through increased resistance to oil canning.

Analysis of Dynamic Performance of Solid Oxide Fuel Cells (고체산화물 연료전지의 동적 성능 특성 해석)

  • Yang, Jin-Sik;Sohn, Jeong-L.;Ro, Sung-Tack
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1652-1657
    • /
    • 2004
  • Model for the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reaction in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power and chemical compositions with different levels of load changes are investigated.

  • PDF

Steering Model for Vehicle Dynamic Analysis (차량 동력학 해석을 위한 조향장치 모델링)

  • Tak, Tae-Oh;Kim, Kum-Cheol;Yoon, Jung-Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.214-221
    • /
    • 1999
  • In this research, a power-assisted steering system is modeled as a part of a full vehicle dynamic model. The dynamic model of the steering system incorporates hydraulic and dynamic relations between major parts of a steering system, such as steering column, control valve, rack and pinion gear. Through an experimental setup of the steering system, the steering system model is validated. The steering model is included in a full vehicle dynamic model of a car, where kinematic relations between steering and suspension system are defined, and various simulations are performed to evaluate the performance of steering system in conjunction with overall dynamic performance of the vehicle.

  • PDF

Study of Current Collection Performance according to Dropper Spacing for Catenary (전차선 드로퍼 간격에 따른 집전성능 분석)

  • 권삼영;이기원;창상훈
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.310-317
    • /
    • 1999
  • This paper presents study of collection performance according to dropper spacing for catenary Static characteristics analysis, dynamic simulation, stress and wear analysis for different 5 catenary configurations according to dropper spacing are performed. And collection performance for TGV-Nord catenary system is also analyzed in order to compare and evaluate.

  • PDF

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.

FE model updating and seismic performance evaluation of a historical masonry clock tower

  • Gunaydin, Murat;Erturk, Esin;Genc, Ali Fuat;Okur, Fatih Yesevi;Altunisik, Ahmet Can;Tavsan, Cengiz
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-82
    • /
    • 2022
  • This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.

Dynamic Performance Evaluation of New Type PSC Railroad Bridges (신형식 PSC 철도교량의 동적성능 평가)

  • Choi, Sanghyun
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.4
    • /
    • pp.259-265
    • /
    • 2011
  • After the commercial opening of the KTX in 2005, the high speed railroad has been rapidly emerged as the major transportation means due to its high energy efficiency. Recently, the government has announced its plan to build the future transportation system around the high speed railroad. Based on this policy, the existing lines as well as the lines under construction or design are planning to increase design speed. In this paper, the suitability of the mid-span PSC girder bridges for the high speed railroad is evaluated via dynamic analysis. IT, Precom, and WPC girder bridges are considered for the purpose of this study and, for comparison, the identical modeling method and the analysis technique are utilized. The performance indices used for dynamic performance evaluation are the natural frequency, the vertical displacement, the end axial displacement, track irregularity, etc. The KTX train is utilized as a dynamic load, and the dynamic analysis is performed up to the train speed of 420km/hr with the increment of 10km/hr.

A study on structural integrity and dynamic characteristic of inertial load test equipment for performance test of railway vehicle propulsion control system (철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Lee, Sang-Hoon;Lee, Dae-Bong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1389-1394
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to it's application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and it's dynamic characteristic was evaluated the designed using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2. Also, the structural stability was proved by maximum dynamic displacement of 0.82mm.

  • PDF