• 제목/요약/키워드: dynamic parameter

검색결과 1,898건 처리시간 0.03초

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

Dynamic to static eccentricity ratio for site-specific earthquakes

  • Kamatchi, P.;Ramana, G.V.;Nagpal, A.K.;Iyer, Nagesh R.;Bhat, J.A.
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.391-413
    • /
    • 2015
  • Damage of torsionally coupled buildings situated on soil sites has been reported in literature, however no site-specific studies are available for torsionally coupled buildings having site characteristics as a parameter. Effect of torsion is being accounted in seismic codes by the provision of design eccentricity where the dynamic to static eccentricity ratio is a parameter. In this paper, a methodology to determine dynamic to static eccentricity ratio of torsionally coupled buildings has been demonstrated for Delhi region for two torsionally coupled buildings on three soil sites. The variations of average and standard deviations of frame shears for stiff and flexible edges are studied for four eccentricity ratios for the two buildings for the three sites. From the limited studies made, it is observed that the dynamic to static eccentricity ratios observed for site-specific earthquakes are different from Indian seismic code specified value, hence a proposal is made to include a comment in Indian seismic code. Methodology proposed in this paper can be adopted for any region, for the estimation of dynamic to static eccentricity ratio for site specific earthquake.

LabView기반 6축 수직 다관절 로봇의 파라미터 스케쥴링 프로그래밍에 관한 연구 (Application of LabView-Based Parameter Scheduling Programming for a 6-Axis Articulated Robot)

  • 김성빈;정원지;김효곤
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.327-333
    • /
    • 2015
  • As industrial robots come into wider use, their control techniques are being developed along with enhancements in their performance. Specially, the dynamic performance of a 6-axis articulated industrial robot is greatly changed according to the position and orientation of the robot. This means that the PI parameter tuning of the robot and orientation of the robot. This mconsidering the dynamic characteristics of robot mechanism. In this study, $LabView^{(R)}$ programming was applied to automatically conduct parameter scheduling for various robot motions. Using forward and inverse kinematics of RS2, we can divide the working envelope of RS2 into 24 subspaces. We then conduct the gain-tuning according to each subspace. Finally, we program the actual gain scheduling, in which the optimized gain-tuning for each subspace to be passed should be changed for various robot motions using $LabView^{(R)}$.

Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Park, Kyu-Sik;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.227-243
    • /
    • 2015
  • In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

A practical identification method for robot system dynamic parameters

  • Kim, Sung-wun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.705-710
    • /
    • 1989
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated motor and manipulator is derived. An off line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of robot was tested. The trajectory errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

로보트시스템 동적 변수의 실용적인 추정 방법 (A Practical Identification Method for Robot System Dynamic Parameters)

  • Kim, Sungkwun
    • 대한전기학회논문지
    • /
    • 제39권7호
    • /
    • pp.765-772
    • /
    • 1990
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated system of the mainpulator and motor is derived. An off-line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of the robot was tested. The trajectroy errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

Dynamic analysis of a laminated composite beam under harmonic load

  • Akbas, S.D.
    • Coupled systems mechanics
    • /
    • 제9권6호
    • /
    • pp.563-573
    • /
    • 2020
  • Dynamic responses of a laminated composite cantilever beam under a harmonic are investigated in this study. The governing equations of problem are derived by using the Lagrange procedure. The Timoshenko beam theory is considered and the Ritz method is implemented in the solution of the problem. The algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of dynamic problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of load parameter, the fiber orientation angles and stacking sequence of laminas on the dynamic responses of the laminated beam are investigated.

두경부 토모테라피 치료 시 CT scan range에 따른 치료계획의 정확성 평가 (Accuracy evaluation of treatment plan according to CT scan range in Head and Neck Tomotherapy)

  • 권동열;김진만;채문기;박태양;서성국;김종식
    • 대한방사선치료학회지
    • /
    • 제31권2호
    • /
    • pp.13-24
    • /
    • 2019
  • 목 적: 두경부 토모테라피 치료 시 다양한 이유로 CT scan range가 부족한 상황이 발생한다. CT scan range는 정확한 선량 계산에 영향을 주기 때문에 Re-CT Simulation이 좋지만 환자의 피폭선량 증가와 불편함, 치료일정 변경 등 문제점을 갖는다. 이에 본 저자는 기존 CT scan range에서 Plan setup parameter 변화를 통해 Re-CT Simulation 없이 정확한 치료계획에 필요한 최소한의 CT scan range를 평가해보고자 한다. 대상 및 방법: CT simulator(Discovery CT590 RT, GE, USA)와 In House Head & Neck Phantom을 이용하였고, Target의 끝단에서 0.25~3.0cm까지 0.25cm씩 증가시켜 CT scan range 별 이미지를 획득하였다. Target과 정상 장기를 Head & Neck Phantom에 등록하고 ACCURAY Precision® 이용하여 치료계획을 설계하였다. 처방 선량은 Daily 2.2Gy, 27 Fxs, Total Dose 59.4Gy, Target은 처방 선량의 95~107%, 정상 장기는 SMC Protocol에 맞춰 치료계획을 설계하였다. 동일한 치료계획 조건에서 Field Width(FW)와 Jaw 모드를 고려한 5가지 방법(Fixed-1cm, Fixed-2.5cm, Fixed-5cm, Dynamic-2.5cm Dynamic-5cm)과 2가지 Pitch(0.43, 0.287)의 Plan Setup parameter로 치료계획을 설계하였다. 각 치료계획에 대한 선량 전달의 정확성은 EBT3 film과 RIT(Complete Version 6.7, RIT, USA)를 이용하여 분석하였다. 결 과: Target의 처방 선량과 정상 장기의 견딤선량(Tolerance dose)을 만족한 치료계획(SMC Protocol)은 Fixed-1cm은 0.25cm 이상, Fixed-2.5cm는 0.75cm 이상, Dynamic-2.5cm는 1cm 이상, Fixed-5cm과 Dynamic-5cm인 경우는 1.75cm 이상의 Scan range가 있어야 정확한 치료계획을 할 수 있었다. 선량 전달의 정확성은 RIT로 분석한 결과 SMC Protocol을 만족한 치료계획에서 3% 미만의 오차였다. 결 론: 두경부 토모테라피 치료 시 CT scan range가 부족한 경우 Plan Setup Parameter 중 Field Width(FW)를 조절하여 정확한 치료계획을 설계할 수 있었다. 이에 본 저자가 추천한 Plan Setup Parameter를 CT scan range에 따라 적용하고 Re-CT 여부를 판단한다면 업무의 효율성 및 환자의 피폭선량을 감소시킬 수 있을 것으로 사료된다.

Analysis and Design of DC-link Voltage Controller in Shunt Active Power Filter

  • Wang, Yu;Xie, Yun-Xiang;Liu, Xiang
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.763-774
    • /
    • 2015
  • This study investigates the inherent influence of a DC-link voltage controller on both DC-link voltage control and the compensation performance of a three-phase, four-wire shunt active power filter (APF). A nonlinear variable-parameter DC-link voltage controller is proposed to satisfy both the dynamic characteristic of DC-link voltage control and steady-state compensation performance. Unlike in the conventional fixed-parameter controller, the parameters in the proposed controller vary according to the difference between the actual and the reference DC-link voltages. The design procedures for the nonlinear voltage controller with variable parameters are determined and analyzed so that the proposed voltage controller can be designed accordingly. Representative simulation and experimental results for the three-phase, four-wire, center-spilt shunt APF verify the analysis findings, as well as the feasibility and effectiveness of the proposed DC-link voltage controller.

단상조직을 갖는 Cu-Zn합금의 고온강도에 미치는 변형속도와 온도의 영향 (Effects of Strain Rate and Temperature on the Hot Strength for Single Phase Cu-Zn Alloy)

  • 권용환;유연철
    • 소성∙가공
    • /
    • 제4권2호
    • /
    • pp.159-168
    • /
    • 1995
  • The torsion tests in the range of $550~800^{\circ}C$, $5.0{\times}10^{-3}~5.0{\times}10^0/sec$ were performed to study the effects of strain rate$(\.{\varepsilon})$ and temperature(T) on the hot strength of Cu-Zn alloy. High temperature flow stresses of this alloy increased with increasing $\.{\varepsilon}$ and/or decreasing T, and than the more grain refinement could be obtained. The flow curves exhibited a peak followed by a steady steady state regime as a result of dynamic recrystallization. The hot strength dependence of $\.{\varepsilon}$ and T was described by a hyperbolic sine law, $\.{\varepsilon}=A(sinh0.017{\sigma})^4.81$exp(-216KJ/mol). Hot strength could be reduced at the arbitary condition, $\.{\varepsilon}$ and T, by constitutive parameter Z(Zenner-Hollomon parameter), $Z=A(sinh{\alpha}{\sigma})^n=\.{\varepsilon}$exp(Q/RT).

  • PDF