• 제목/요약/키워드: dynamic optimal shape

검색결과 119건 처리시간 0.024초

Topological optimized design considering dynamic problem with non-stochastic structural uncertainty

  • Lee, Dong-Kyu;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.79-94
    • /
    • 2010
  • This study shows how uncertainties of data like material properties quantitatively have an influence on structural topology optimization results for dynamic problems, here such as both optimal topology and shape. In general, the data uncertainties may result in uncertainties of structural behaviors like deflection or stress in structural analyses. Therefore optimization solutions naturally depend on the uncertainties in structural behaviors, since structural behaviors estimated by the structural analysis method like FEM need to execute optimization procedures. In order to quantitatively estimate the effect of data uncertainties on topology optimization solutions of dynamic problems, a so-called interval analysis is utilized in this study, and it is a well-known non-stochastic approach for uncertainty estimate. Topology optimization is realized by using a typical SIMP method, and for dynamic problems the optimization seeks to maximize the first-order eigenfrequency subject to a given material limit like a volume. Numerical applications topologically optimizing dynamic wall structures with varied supports are studied to verify the non-stochastic interval analysis is also suitable to estimate topology optimization results with dynamic problems.

부하관리 효과를 고려한 최적 전원개발계획 수립에 관한 연구 (Optimal Generation Expansion Planning with Load Management Effect)

  • 박종진;정도영;김준현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.96-99
    • /
    • 1990
  • Recently, electric energy consumption pattern shows very high peak load with low load factor. This Load pattern have made electric utilities be interested in Load Management, many studies are reported. But most of these studies are concerned with Rate - Load shape relation, a few of these are concerned with generating cost reduction. In this study, the effect of Load Management is incorporated to establish optimal Generation Expansion Planning. Using avoided cost, optimal generation expansion planning is achieved to make maximum avoided cost of Electric utility. Dynamic programming technique is used to solve this algorithm.

  • PDF

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

Effect of structure configurations and wind characteristics on the design of solar concentrator support structure under dynamic wind action

  • Kaabia, Bassem;Langlois, Sebastien;Maheux, Sebastien
    • Wind and Structures
    • /
    • 제27권1호
    • /
    • pp.41-57
    • /
    • 2018
  • Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar structures. These solar tracking structures need to be optimized to be competitive against other types of energy production. In particular, the selection of the structural parameters needs to be optimized with regards to the dynamic wind response. This study aims to evaluate the effect of the main structural parameters, as selected in the preliminary design phase, on the wind response and then on the weight of the steel support structure. A parametric study has been performed where parameters influencing dynamic wind response are varied. The study is performed using a semi-deterministic time-domain wind analysis method. Unsteady aerodynamic model is applied for the shape of the CPV structure collector at different configurations in conjunction with a consistent mass-spring-damper model with the corresponding degrees of freedom to describe the dynamic response of the system. It is shown that, unlike the static response analysis, the variation of the peak wind response with many structural parameters is highly nonlinear because of the dynamic wind action. A steel structural optimization process reveals that close attention to structural and site wind parameters could lead to optimal design of CPV steel support structure.

평판의 국부적인 기하학적 변형을 모사하는 등가 요소 생성 (Dynamically equivalent element for an emboss embeded in a plate)

  • Song, Kyung-Ho;Park, Youn-Sik
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.335.1-335
    • /
    • 2002
  • Among many structural dynamics modification methods for plate and shell vibration problems, embedding an emboss to the surface is very efficient. But deciding an optimal position and shape using optimization algorithm needs defining geometry and remeshing the model for every iteration step to implement the method, which takes much numerical cost. (omitted)

  • PDF

지상 전투차량의 수상 추진 시 동적 안정성에 대한 연구 (Syudy on the dynamic Stability of Ground Armored Moving Vehicle during cruising river)

  • 안태술;이경훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.252-255
    • /
    • 2008
  • In this study, the characteristics of crossing a river of Ground Armored Vehicle (GAV) were evaluated by numerical method and real size tests. 3-D hybrid mesh systems were constructed by 3-D models of the GAV, and a commercial software, FLUENT, was used in numerical analysis. In order to deal with multi-phase problem (air and water), Volume Of Fluid (VOF) method was used, and Moving and Deforming Mesh (MDM) was adapted for unsteady motion of GAV. There were two steps in this research. Firstly, stability of the GAV which cruised a river was evaluated by changing several shapes of water-proof-front-wing of the GAV in steady state, and compared results (free surface shape and drag value in 10km/h) with those of real size tests. Secondly, results of unsteady analysis considering weight and moment of inertia of the GAV were presented. There were showed a maximum velocity with a designed water jet and dynamic stability including pitch, roll, and yaw moment. Based on these results, the optimal shape of water-proof-front-wing of the GAV was determined for a proto-type of the GAV.

  • PDF

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.

On the characteristics and seismic study of Hat Knee Bracing system, in steel structures

  • JafarRamaji, Issa;Mofid, Massood
    • Steel and Composite Structures
    • /
    • 제13권1호
    • /
    • pp.1-13
    • /
    • 2012
  • In this study, a new structural bracing system named 'Hat Knee Bracing' (HKB) is presented. In this structural system, a special form of diagonal braces, which is connected to the knee elements instead of beam-column joints, is investigated. The diagonal elements provide lateral stiffness during moderate earthquakes. However the knee elements, which is a fuse-like component, is designed to have one plastic joint in the knee elements for dissipation of the energy caused by strong earthquake. First, a suitable shape for brace and knee elements is proposed through elastic studying of the system and several practical parameters are established. Afterward, by developing applicable and highly accurate models in Drain-2DX, the inelastic behavior of the system is carefully considered. In addition, with inelastic study of the new bracing system and comparison with the prevalent Knee Bracing Frame system (KBF model) in nonlinear static and dynamic analysis, the seismic behavior of the new bracing system is reasonably evaluated.

STOCHASTIC SINGLE MACHINE SCHEDULING WITH WEIGHTED QUADRATIC EARLY-TARDY PENALTIES

  • Zhao, Chuan-Li;Tang, Heng-Yong
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.889-900
    • /
    • 2008
  • The problem of scheduling n jobs on a single machine is considered when the machine is subject to stochastic breakdowns. The objective is to minimize the weighted squared deviation of job completion times from a common due date. Two versions of the problem are addressed. In the first one the common due date is a given constant, whereas in the second one the common due date is a decision variable. In each case, a general form of deterministic equivalent of the stochastic scheduling problem is obtained when the counting process N(t) related to the machine uptimes is a Poisson process. It is proved that an optimal schedule must be V-shaped in terms of weighted processing time when the agreeable weight condition is satisfied. Based on the V-shape property, two dynamic programming algorithms are proposed to solve both versions of the problem.

  • PDF