• Title/Summary/Keyword: dynamic neural network

Search Result 791, Processing Time 0.025 seconds

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Study on High-speed Cyber Penetration Attack Analysis Technology based on Static Feature Base Applicable to Endpoints (Endpoint에 적용 가능한 정적 feature 기반 고속의 사이버 침투공격 분석기술 연구)

  • Hwang, Jun-ho;Hwang, Seon-bin;Kim, Su-jeong;Lee, Tae-jin
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.21-31
    • /
    • 2018
  • Cyber penetration attacks can not only damage cyber space but can attack entire infrastructure such as electricity, gas, water, and nuclear power, which can cause enormous damage to the lives of the people. Also, cyber space has already been defined as the fifth battlefield, and strategic responses are very important. Most of recent cyber attacks are caused by malicious code, and since the number is more than 1.6 million per day, automated analysis technology to cope with a large amount of malicious code is very important. However, it is difficult to deal with malicious code encryption, obfuscation and packing, and the dynamic analysis technique is not limited to the performance requirements of dynamic analysis but also to the virtual There is a limit in coping with environment avoiding technology. In this paper, we propose a machine learning based malicious code analysis technique which improve the weakness of the detection performance of existing analysis technology while maintaining the light and high-speed analysis performance applicable to commercial endpoints. The results of this study show that 99.13% accuracy, 99.26% precision and 99.09% recall analysis performance of 71,000 normal file and malicious code in commercial environment and analysis time in PC environment can be analyzed more than 5 per second, and it can be operated independently in the endpoint environment and it is considered that it works in complementary form in operation in conjunction with existing antivirus technology and static and dynamic analysis technology. It is also expected to be used as a core element of EDR technology and malware variant analysis.

Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety (주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘)

  • Shim, Seungbo;Jeong, Jae-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.95-111
    • /
    • 2021
  • As the population decreases in an aging society, the average age of drivers increases. Accordingly, the elderly at high risk of being in an accident need autonomous-driving vehicles. In order to secure driving safety on the road, several technologies to respond to various obstacles are required in those vehicles. Among them, technology is required to recognize static obstacles, such as poor road conditions, as well as dynamic obstacles, such as vehicles, bicycles, and people, that may be encountered while driving. In this study, we propose a deep neural network algorithm capable of simultaneously detecting these two types of obstacle. For this algorithm, we used 1,418 road images and produced annotation data that marks seven categories of dynamic obstacles and labels images to indicate road damage. As a result of training, dynamic obstacles were detected with an average accuracy of 46.22%, and road surface damage was detected with a mean intersection over union of 74.71%. In addition, the average elapsed time required to process a single image is 89ms, and this algorithm is suitable for personal mobility vehicles that are slower than ordinary vehicles. In the future, it is expected that driving safety with personal mobility vehicles will be improved by utilizing technology that detects road obstacles.

A Study on Link Travel Time Prediction by Short Term Simulation Based on CA (CA모형을 이용한 단기 구간통행시간 예측에 관한 연구)

  • 이승재;장현호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.91-102
    • /
    • 2003
  • There are two goals in this paper. The one is development of existing CA(Cellular Automata) model to explain more realistic deceleration process to stop. The other is the application of the updated CA model to forecasting simulation to predict short term link travel time that takes a key rule in finding the shortest path of route guidance system of ITS. Car following theory of CA models don't makes not response to leading vehicle's velocity but gap or distance between leading vehicles and following vehicles. So a following vehicle running at free flow speed must meet steeply sudden deceleration to avoid back collision within unrealistic braking distance. To tackle above unrealistic deceleration rule, “Slow-to-stop” rule is integrated into NaSch model. For application to interrupted traffic flow, this paper applies “Slow-to-stop” rule to both normal traffic light and random traffic light. And vehicle packet method is used to simulate a large-scale network on the desktop. Generally, time series data analysis methods such as neural network, ARIMA, and Kalman filtering are used for short term link travel time prediction that is crucial to find an optimal dynamic shortest path. But those methods have time-lag problems and are hard to capture traffic flow mechanism such as spill over and spill back etc. To address above problems. the CA model built in this study is used for forecasting simulation to predict short term link travel time in Kangnam district network And it's turned out that short term prediction simulation method generates novel results, taking a crack of time lag problems and considering interrupted traffic flow mechanism.

Software Measurement by Analyzing Multiple Time-Series Patterns (다중 시계열 패턴 분석에 의한 소프트웨어 계측)

  • Kim Gye-Young
    • Journal of Internet Computing and Services
    • /
    • v.6 no.1
    • /
    • pp.105-114
    • /
    • 2005
  • This paper describes a new measuring technique by analysing multiple time-series patterns. This paper's goal is that extracts a really measured value having a sample pattern which is the best matched with an inputted time-series, and calculates a difference ratio with the value. Therefore, the proposed technique is not a recognition but a measurement. and not a hardware but a software. The proposed technique is consisted of three stages, initialization, learning and measurement. In the initialization stage, it decides weights of all parameters using importance given by an operator. In the learning stage, it classifies sample patterns using LBG and DTW algorithm, and then creates code sequences for all the patterns. In the measurement stage, it creates a code sequence for an inputted time-series pattern, finds samples having the same code sequence by hashing, and then selects the best matched sample. Finally it outputs the really measured value with the sample and the difference ratio. For the purpose of performance evaluation, we tested on multiple time-series patterns obtained from etching machine which is a semiconductor manufacturing.

  • PDF

Deep Learning-based Action Recognition using Skeleton Joints Mapping (스켈레톤 조인트 매핑을 이용한 딥 러닝 기반 행동 인식)

  • Tasnim, Nusrat;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Recently, with the development of computer vision and deep learning technology, research on human action recognition has been actively conducted for video analysis, video surveillance, interactive multimedia, and human machine interaction applications. Diverse techniques have been introduced for human action understanding and classification by many researchers using RGB image, depth image, skeleton and inertial data. However, skeleton-based action discrimination is still a challenging research topic for human machine-interaction. In this paper, we propose an end-to-end skeleton joints mapping of action for generating spatio-temporal image so-called dynamic image. Then, an efficient deep convolution neural network is devised to perform the classification among the action classes. We use publicly accessible UTD-MHAD skeleton dataset for evaluating the performance of the proposed method. As a result of the experiment, the proposed system shows better performance than the existing methods with high accuracy of 97.45%.

ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold (개선된 유사성 측정 방법과 동적인 경계 변수를 이용한 ART1 알고리즘)

  • 문정욱;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1318-1324
    • /
    • 2003
  • There are two problems in the conventional ART1 algorithm. One is in similarity testing method of the conventional ART1 between input patterns and stored patterns. The other is that vigilance threshold of conventional ART1 influences the number of clusters and the rate of recognition. In this paper, new similarity testing method and dynamical vigilance threshold method are proposed to solve these problems. The former is similarity test method using the rate of norm of exclusive-NOR between input patterns and stored patterns and the rate of nodes have equivalence value, and the latter method dynamically controls vigilance threshold to similarity using fuzzy operations and the sum operation of Yager. To check the performance of new methods, we used 26 alphabet characters and nosed characters. In experiment results, the proposed methods are better than the conventional methods in ART1, because the proposed methods are less sensitive than the conventional methods for initial vigilance and the recognition rate of the proposed methods is higher than that of the conventional methods.

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S.;Khatir, T.;Boutchicha, D.;Le Thanh, C.;Tran-Ngoc, H.;Bui, T.Q.;Capozucca, R.;Abdel-Wahab, M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.

An Action Unit co-occurrence constraint 3DCNN based Action Unit recognition approach

  • Jia, Xibin;Li, Weiting;Wang, Yuechen;Hong, SungChan;Su, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.924-942
    • /
    • 2020
  • The facial expression is diverse and various among persons due to the impact of the psychology factor. Whilst the facial action is comparatively steady because of the fixedness of the anatomic structure. Therefore, to improve performance of the action unit recognition will facilitate the facial expression recognition and provide profound basis for the mental state analysis, etc. However, it still a challenge job and recognition accuracy rate is limited, because the muscle movements around the face are tiny and the facial actions are not obvious accordingly. Taking account of the moving of muscles impact each other when person express their emotion, we propose to make full use of co-occurrence relationship among action units (AUs) in this paper. Considering the dynamic characteristic of AUs as well, we adopt the 3D Convolutional Neural Network(3DCNN) as base framework and proposed to recognize multiple action units around brows, nose and mouth specially contributing in the emotion expression with putting their co-occurrence relationships as constrain. The experiments have been conducted on a typical public dataset CASME and its variant CASME2 dataset. The experiment results show that our proposed AU co-occurrence constraint 3DCNN based AU recognition approach outperforms current approaches and demonstrate the effectiveness of taking use of AUs relationship in AU recognition.

Lateral Control of High Speed Flight Based on Type-2 Fuzzy Logic (Type-2 Fuzzy logic에 기반 한 고속 항공기의 횡 운동 제어)

  • Song, Jin-Hwan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.479-486
    • /
    • 2013
  • There exist two major difficulties in developing flight control system: nonlinear dynamic characteristics and time-varying properties of parameters of aircraft. Instead of the difficulties, many high reliable and efficient control methodologies have been developed. But, most of the developed control systems are based on the exact mathematical modelling of aircraft and, in the absence of such a model, it is very difficult to derive performance, robustness and nominal stability. From these aspects, recently, some approaches to utilizing the intelligent control theories such as fuzzy logic control, neural network and genetic algorithm have appeared. In this paper, one advanced intelligent lateral control system of a high speed fight has been developed utilizing type-2 fuzzy logic, which can deduce the uncertainty problem of the conventional fuzzy logic. The results will be verified through computer simulation.