• Title/Summary/Keyword: dynamic neural network

Search Result 791, Processing Time 0.028 seconds

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

NEURAL NETWORK DYNAMIC IDENTIFICATION OF A FERMENTATION PROCESS

  • Syu, Mei-J.;Tsao, G.T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1021-1024
    • /
    • 1993
  • System identification is a major component for a control system. In biosystems, which is nonlinear and dynamic, precise identification would be very helpful for implementing a control system. It is difficult to precisely identify such non-linear systems. The measurable data on products from 2,3-butanediol fermentation could not be included in a process model based on kinetic approach. Meanwhile, a predictive capability is required in developing a control system. A neural network (NN) dynamic identifier with a by/(1+ t ) transfer function was therefore designed being able to predict this fermentation. This modified inverse NN identifier differs from traditional models in which it is not only able to see but also able to predict the system. A moving window, with a dimension of 11 and a fixed data size of seven, was properly designed. One-step ahead identification/prediction by an 11-3-1 BPNN is demonstrated. Even under process fault, this neural network is still able to perform several-step ahead prediction.

  • PDF

Indirect adaptive control of nonlinear systems using Genetic Algorithm based Dynamic neural network (GA 학습 방법 기반 동적 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.81-84
    • /
    • 2007
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

Neural Network-based FMCW Radar System for Detecting a Drone (소형 무인 항공기 탐지를 위한 인공 신경망 기반 FMCW 레이다 시스템)

  • Jang, Myeongjae;Kim, Soontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.289-296
    • /
    • 2018
  • Drone detection in FMCW radar system needs complex techniques because a drone beat frequency is highly dynamic and unpredictable. Therefore, the current static signal processing algorithms cannot show appropriate detection accuracy. With dynamic signal fluctuation and environmental clutters, it can fail to detect a drone or make false detection. It affects to the radar system integrity and safety. Constant false alarm rate (CFAR), one of famous static signal process algorithm is effective for static environment. But for drone detection, it shows low detection accuracy. In this paper, we suggest neural network based FMCW radar system for detecting a drone. We use recurrent neural network (RNN) because it is the effective neural network for signal processing. In our FMCW radar system, one transmitter emits FMCW signal and four-way fixed receivers detect reflected drone beat frequency. The coordinate of the drone can be calculated with four receivers information by triangulation. Therefore, RNN only learns and inferences reflected drone beat frequency. It helps higher learning and detection accuracy. With several drone flight experiments, RNN shows false detection rate and detection accuracy as 21.1% and 96.4%, respectively.

Design of Direct Adaptive Controller for Autonomous Underwater Vehicle Steering Control Using Wavelet Neural Network (웨이블릿 신경 회로망을 이용한 자율 수중 운동체 방향 제어기 설계)

  • Seo, Kyoung-Cheol;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1832-1833
    • /
    • 2006
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of Autonomous Underwater Vehicle(AUV) steering systems. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome nonlinearities and uncertainty. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and original signal of AUV model that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by gradient-descent method. Through computer simulations, we demonstrate the effectiveness of the proposed control method.

  • PDF

Control of Left Ventricular Assist Device using Neural Network Feedback Feedforward Controller (인공신경망 Feedforward제어기를 이용한 좌심실보조장치의 제어실험)

  • 정성택;류정우;김상현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.150-155
    • /
    • 1997
  • In this paper,we present neural network for control of Left Ventricular Assist Device(LVAD)system with a pneumatically driven mock cirulation system. It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately, the neural network can be applied to control of a nonliner dynamic system by learning capability. In this study,we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by computer simulation and experiment.

  • PDF

Application of Neural Network Precompensated PID Controller for Load Frequency Control of Power Systems (전력계통의 부하주파수 제어를 위한 신경회로망 전 보상 PID 제어기 적용)

  • 김상효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.480-487
    • /
    • 1999
  • In this paper we propose a neural network precompensated PID(NNP PID) controller for load frequency control of 2-area power system. While proportional integral derivative(PID) controllers are used in power system they have many problems because of high nonlinearities of the power system So a neural network-based precompensation scheme is adopted into a conventional PID controller to obtain a robust control to the nonlinearities. The applied neural network precompen-sator uses an error back-propagation learning algorithm having error and change of error as inputand considers the changing component of forward term of weighting factor for reducing of learning time. Simulation results show that the proposed control technique is superior to a conventional PID controller and an optimal controller in dynamic responses about load disturbances. The pro-posed technique can be easily implemented by adding a neural network precompensator to an existing PID controller.

  • PDF

Landmark recognition in indoor environments using a neural network (신경회로망을 이용한 실내환경에서의 주행표식인식)

  • 김정호;유범재;오상록;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.306-309
    • /
    • 1996
  • This paper presents a method of landmark recognition in indoor environments using a neural-network for an autonomous mobile robot. In order to adapt to image deformation of a landmark resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The MLTM is. used for matching an image template with deformed real images and the DASM is proposed to detect correct feature points among incorrect feature points. Finally a feed-forward neural-network using back-propagation algorithm is adopted for recognizing the landmark.

  • PDF

Control method for DC Motor based on Neural Networks (인공신경회로망에 기초한 직류모터제어)

  • Park, Jin-Hyun;Choi, Young-Kiu;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.248-250
    • /
    • 1993
  • In this paper, we assume that the dynamics of DC motor and nonlinear load are unknown. We train the inverse dynamic model of DC motor and nonlinear load using the neural network and construct speed control system based on the traind dynamic model and current control mode. Speed prediction scheme using neural network is also proposed the alleviate the time delay effect caused by the computation time of neural network. Simulation results show good performances of the control system. Finally, hardware configuration of the control system is outlined.

  • PDF

Adaptive Control of the Nonlinear Systems Using Diagonal Recurrent Neural Networks (대각귀환 신경망을 이용한 비선형 적응 제어)

  • Ryoo, Dong-Wan;Lee, Young-Seog;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.939-942
    • /
    • 1996
  • This paper presents a stable learning algorithm for diagonal recurrent neural network(DRNN). DRNN is applied to a problem of controlling nonlinear dynamical systems. A architecture of DRNN is a modified model of the Recurrent Neural Network(RNN) with one hidden layer, and the hidden layer is comprised of self-recurrent neurons. DRNN has considerably fewer weights than RNN. Since there is no interlinks amongs in the hidden layer. DRNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. To guarantee convergence and for faster learning, an adaptive learning rate is developed by using Lyapunov function. The ability and effectiveness of identifying and controlling a nonlinear dynamic system using the proposed algorithm is demonstrated by computer simulation.

  • PDF