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ABSTRACT

System identification is a major component for a control
system. In biosystems, which is nonlinear and dynamic, pre-
cise identification would be very helpful for implementing a
control system. It is difficult to precisely identify such non-
linear systems. The measurable data on products from 2,3-
butanediol fermentation could not be included in a process
model based on kinetic approach. Meanwhile, a predictive
capability is required in developing a control system. A
neural network (NN) dynamic identifier with a bt/(1+]t|)
transfer function was therefore designed being able to predict
this fermentation. This modified inverse NN identifier differs
from traditional models in which it is not only able to see but
also able to predict the system. A moving window, with a
dimension of 11 and a fixed data size of seven, was properly
designed. One-step ahead identification/prediction by an
11-3-1 BPNN is demonstrated. Even under process fault, this
neural network is still able to perform several-step ahead

prediction.

1. Introduction

The purpose of system identification is to search for a
process model which relates outputs of a system to control
input command. System identification is one type of model
such that the information from this model should be referred
to control command and be able to provide a better foun-
dation for control.

Product distribution of 2,3-butanediol (2,3-BDL) fermen-
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tation could be governed by oxygen supply. 2,3-BDL is pro-
duced at an optimal fractional yield under a partially an-
aerobic condition {1]. We would therefore prefer to relate the
information on products to the information on oxygen supply.
Oxygen availability to cells depends upon dissolved oxygen
(DO) and oxygen uptake rate (OUR). The DO value, in turn,
could be regulated by oxygen partial pressure (or oxygen
composition) in the gas phase. Oxygen composition is thus
used as the control input parameter. The data on products
would thus be needed for identifying the fermentation. Four
products, acetic acid, acetoin, ethanol, and 2,3-BDL, were

all measured.

The ability of identifying bioprocesses by neural
network (NN) has been demonstrated [2]. Accordingly, neural
network for system identification would be tested from this
complicated fermentation. Predictive capability is an im-
portant component for a control system. Therefore, we would
design the identification with prediction function.

A fermentation process is usually a nonlinear, time-
variant system. It is a system with slow reaction so the

sampling interval could be allowed minutes. The whole range
for product concentrations during a fermentation varies a lot.

It is rather difficult to find a proper model for identifying

the whole course of a fermentation. Most process models with
fixed parameters are from kinetic approach which usually
could not well identify such dynamic fermentation processes.
Therefore, instead of a static kinetic model, the identifi-

cation from dynamic approach with adaptively adjusted pa-
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rameters would be searched.

A precise process model and a good controller model
are essential to a c‘ontrol system.
The process model (identification) can be expressed as:

x, =f(y;) (1)
where x; is the monitored outcome (at time i) from the system,
and y, is the control command (w.r.t. x;} to the system.
The controller model can be expressed as:
uy = g X, ug, X, 4) (2)

where u',,; is the predicted control command w.r.t. x;,,9, the
desired x for next measurement (at time i+1);
X; = (Xg, ---s X;.p» X; ), the array of measured data up to time i;
u;=(l,...,u;), the array of corresponding control commands;

Equations (1) and (2) are inverse to each other. These
two equations must be coupled together to complete a control
system. Therefore, Equation (1) must be converted to get the
expression on u;, i.e., w; = fi"1.
The result is then merged into Equation (2):

U, = glx;, £ xd) (3)

where ;1 = ( fl(x), ..., f1(x,,,), FYx;) )

The equation for process model must be inversible, in

other words, for the function, f{ - ), there must exist £1(-)
(a one on one mapping between f{ - ) and f1( - )). Iff(-)is

not inversible, for a particular x, there might exist more than

one u, which would lead to an unstable control.

2. System Description
2.1 Modified Inverse-type Neural Network Identification
For avoiding the inversion of process model, an
inverse-type process model was implemented [3] to control a
time-invariant nonlinear system with unknown dynamics.
u=1{x) (4)
Accordingly, we therefore consider, in a similar way, to
design an inverse-type model for this fermentation, however,
with modification. The identification will be so constructed
that all the measured product concentrations relate to the
oxygen composition. Neural network (NN), with the powerful
identification capability, will be used for this modified inverse

process model. Prediction performed by NN has been demon-

strated [4,5). Prediction capability is important for control. As
a result, the identification will be designed being able to pre-
dict.the future control command. This has never been done
with conventional and any other existing process models. In
addition, NN identification is of a modified inverse type so
that the past information on products and oxygen composition
is also included, which is different from conventional
approach and the inverse-type model, i.e.,
u,=f(x,u,) 5

Such a design of process identification would benefit
followed control. Once given a desired output, the control
command w.r.t. this desired output could be computed in a

straightforward manner. More precisely, the process model
and the controller model from such design are in the same

form but differ only by providing measured output to this
process model and desired output to switch to a controller
model.
Wiy = 10X X% ) (6)

The NN identification/prediction for this fermentation is
thus tested and could be expressed as follows:

u(i+1) = f( u(i-1), u(), PG-1), P(), P(i+1)) (7)
where u(i+1) is the predicted oxygen composition w.r.t. the
measured data at time i+1. u(i-1) and u(i) are the O, com-
position fed to the system at time i-1 and i, respectively.
P(i) = ( P;(i) ), the array of four product concentrations
measured at time i and j=1, 2, 3, 4, for acetic acid, acetoin,
ethanol, and 2,3-BDL, respectively. P(i-1) is defined as the
array of measurements at time i-1 accordingly. P,(i+1) is the
2,3-BDL concentration measured at time i+1, which, in turn,
is switched to the desired 2,3-BDL concentration for the
controller model while this formula is alternated.
2.2 Fermentation System

A 2L fermentor has a motor/controller to control the
agitation speed at 600 rpm. Temperature was controlled at
37°C. pH was detected and controlled at 5.7. Air was su-
pplied to the fermentor through a filter disk.

A gas mixer was constructed for control of inlet gas

flow rate and composition by the mixing of N, and air. The

Tain components are two mass flow controilers.Each receives
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0 to 5V signals which produce corresponding flow rates of

0 - 4/3v/v/m. Gas flow rate could be varied by supplying
varying voltages to each mass flow controller. The oxygen
composition was controlled by a D/A board, DDA-06 unit.
The output range was from 0 to +10 V which is the full input
range for N, and air two ports. DDA-06 must be calibrated

with supplied calibration/installation program before use.

3. Results and Discussion

Fig. 1 shows the plot of four products, acetic acid, acetoin,
ethanol, and 2,3-BDL, measured from a batch fermentation.
The fermentation is to produce the major product, 2,3-BDL,
as a secondary metabolite. Cell growth and product distri-
bution are governed by air supply. A sufficient air supply
directs the pathway to grow cells while an intermediate air
supply favors 2,3-BDL production. Aeration is obviously very
important to cell growth. This fermentation was therefore di-
vided into two phases, during the first phase, air was su-
fficiently supplied to grow cells, while during the second

phase, the aeration was decreased to stimulate the production

of 2,3-BDL. Therefore, the schedule on O, supply was

designed according to the above considerations.

3.1 Neural Network Identification/Prediction
3.1.1 Without Process Fault

Neural network identification/prediction was carried out
by providing fermentation data generated from predetermined
O, input schedule. Factors such as number of inputs (i.c.,
dimension of the moving window), number of outputs, number
of neurons in hidden layer, number of data sets for learning
were all tested. A transfer function of the saturation form,
bt/(1+{t]) [2,4], was successfully implemented.

An 11-3-1 BPNN with seven learning data sets, as shown
in Fig. 2, was found from this effort. The 11 inputs include
the four product concentrations measured at time i-1 and i,
the oxygen composition provided to the system at time i-1
and 1, and the 2,3-BDL concentration measured at time i+1.
The output is the predicted (or provided) oxygen composition

at time i+1. The input/output data for learning can be written

as {(P(i-1),u(i-1),P(i),u(i),P,(+1))u(i+1)ji=1, 2, 3, ..., 7}.

In the first seven learnings, data file was expanding while
newly measured data was added along the time course.
Starting from the eighth learning, the first data set was ex-
cluded while a new measurement was added. The size of data
file for an usual moving window is one while a size of seven
was found optimal for this window. From this moving window
of seven data sets, the dynamic NN identification/prediction
was thus built. It is not only able to identify this process, but
also able to work out one-step ahead prediction. The result
on identification/one-step ahead prediction performed by this
11-3-1 BPNN is shown in Fig. 3. Errors (could be resulted
from the measurement and the computation) are plotted in
Fig. 4.
3.1.2 With Process Fault

The process was interrupted by fault in several batches.
If the measured data is not obtained, could it be possible
to search for such an identifier with the ability to see
several-step ahead? The unavailable measurements could thus
be ignored. How this identification/prediction performs with
process fault was therefore examined. Fig. 5 shows the identifi-
cation/prediction results of this 11-3-1 BPNN with interrupted
measurements. The measurement was interrupted for more

than one hour. Predicted value of the O, composition right
after this one-hour interruption was reasonable. There are at

least 9 measurements in each hour, the success of the work
indicates that this identification could perform the prediction
up to 9-step ahead. The average relative error, with limited
computation time of 40 seconds, for each prediction is shown
in Fig. 6. The learning time was limited so that the further
on-line control system could be possibly accommodated.
4. Conclusion

The dynamic identification/prediction of 2,3-BDL
fermentation was successfully performed by a 11-3-1 BPNN.
A transfer function, bt/(1+t]), with BPNN has demonstrated
its ability in identifying nonlinear systems. This identification
was prepared such that the inversion of process model could

be avoided. This dynamic identification differs from tra-

ditional process models in which it has prediction capability.
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One-step ahead prediction and even several-step ahead pre-
diction were both performed from such neural network identifi-
cation. A moving ﬁndow with dimension of 11 (i.e., the
number of inputs in this BPNN identifier) to view seven data
sets for each learning was successfully implemented. In case
of process fault, or if the on-line monitoring system was inter-
rupted, this 11-3-1 BPNN could still provide available infor-
mation to the process by several-step ahead prediction. The
success of this modified inverse type identification should
benefit the future control system. This identification was
prepared such that the inversion of process model could be
avoided.
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Fig. 1 Product concentrations of 2,3-BDL fermentation
with a predetermined oxygen schedule
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