• Title/Summary/Keyword: dynamic moment

Search Result 861, Processing Time 0.027 seconds

A Study on the Physical Properties of Saturated Fatty Acids for External Stimulus (외부자극에 대한 포화지방산의 물성평가)

  • 조완제;구창권;송경호;박태곤;박근호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.179-182
    • /
    • 1998
  • The structural changes of molecules on the water surface were measured by displacement currents and $\pi$-A isotherm. By using a theoretical equations we calculated charges($\Delta$Q) and dipole moment( $m_{z}$) of saturated fatty acids( $C_{12}$, $C_{14}$, $C_{16}$). The dynamic behavior of saturated fatty acid monolayers at the air/water interface was investigated using a displacement current-measuring technique coupled with the so called Langmuir film technique and also the dipole moment of the acids was determined.as determined.d.

  • PDF

A Study on the Stimulus Reaction of PBLG (PBLG의 자격반응에 관한 연구)

  • Kim, Beyung-Geun;Chang, Hun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.719-722
    • /
    • 2002
  • The Displacement current measurement system used in this experiment because detecting the dynamic behavior of monolayers at the air-water interface is possible. It basically consists of a film balance, a pair of electrodes connected to each other through a sensitive ammeter. Here, one electrode is suspended in air and the other electrode is placed in the water. PBLG phase transformation measured by Maxwell-displacement-current-measurement method in surface of the water. Measured (surface pressure, displacement current and dipole moment) of monolayers of PBLG on the water surface. We measured displacement current that occur when changed temperature. Could know that displacement current is proportional in increase of temperature and great as experiment result.

  • PDF

Study on Vertical Dynamics Compensation for Wobbling Effect Mitigation of Electrostatically Levitated Gyroscope

  • Lee, Jongmin;Song, Hyungmin;Sung, Sangkyung;Kim, Chang Joo;Lee, Sangwoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.293-301
    • /
    • 2014
  • We present a study of vertical dynamics control of an electrostatically levitated gyro-accelerometer considering the wobbling effect and propose a tilt stabilization method with newly introduced control electrodes. Typically, a rotor in a vacuum rotates at high velocity, which may create a drift rate and lead to displacement instability due to the tilt angle of the rotor. To analyze this, first we set up a vertical dynamic equation and determined simulation results regarding displacement control. After deriving an equation for drift dynamics, we analyzed the drift rate of the rotor and the wobbling effect for displacement control quantitatively. Then, we designed new sub-electrodes for moment control that will decrease the drift amplitude of wobbling dynamics. Finally, a simulation study demonstrated that the vertical displacement control with the wobbling compensation electrodes mitigated the rotor's drift rate, showing the effectiveness of the newly proposed control electrodes.

Design of Torsion-typed Smooth Picture Actuator for DLP Projection TV

  • Moon, Yang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.564-568
    • /
    • 2006
  • Smooth picture module is operated by vibration to tilt the light from the DMD (digital micro mirror device) of DLP projection TV, which makes the screen of the TV smoother and DMD chip cost lower. To satisfy the vibration characteristics of smooth picture module, it is designed by optimizing moment of inertia, spring constant and damping coefficient, using structural and fluid dynamic simulation that showed a good agreement with experimental data. To reduce the material cost and moment of inertia, engineering plastic is used and the reliability is estimated. A VCM (voice coil motor) type actuator for smooth picture has to satisfy performance requirements such as higher driving force, lower power consumption, and lower cost. The initial design and optimization for VCM was performed using FE analysis. It allowed us to optimize the design of magnetic circuit of the proposed actuator to obtain higher force while maintaining a lower cost.

  • PDF

Analysis of Electrical Coagulation of Unipolar Charged Particles in an Alternating Electric Using Moment Method (모멘트법을 이용한 AC 전기장 내의 단극성 입자의 전기응집 해석)

  • Ji, Jun-Ho;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • A numerical study has been carried out on the evolution of the particle size distribution for unipolar charged particles that experience coagulation in an alternating electric field. The collision frequency function of charged particles was analytically derived. The log-normal size distribution function is utilized for representing a poly-disperse size distribution and the moments of the particle size distribution are used to solve the general dynamic equation considering only AC electric force effect. The results are compared with the effects of brownian coagulation.

Stability Analysis of a Biped Robot using FRI (FRI를 이용한 이족 보행 로봇의 안정도 해석)

  • 김상범;최상호;김종태;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.574-577
    • /
    • 2001
  • This paper presents the comparison of FRI(Foot Rotation Indicator) point and ZMP(Zero Moment Point) in biped robot stability. We showed FRI may be employed as a useful tool in stability analysis in biped robot. Also, we proposed the balancing joint trajectory derived from FRI point equation for stable gait. The numerical calculation routines and walking algorithms for simulation are performed by MATLAB. The procedure is composed of the leg trajectory planning, the generation of balancing trajectory, and the verification of dynamic stability.

  • PDF

Application of Modal Pushover Analysis for Deformation Capacity Evaluation of Steel Moment Frames (철골구조물의 변형능력평가를 위한 MPA 방법의 적용성 검토)

  • 최원호;김기주;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.266-273
    • /
    • 2002
  • Pushover analysis is frequently used for evaluation of seismic performance and determination of seismic demand of a building structure in the current structural engineering practice field. However, pushover analysis has a advantage for estimation of seismic demands, which cannot account for the contributions of higher modes to response or for a redistribution of inertia forces because of structural yielding and the associated changes in the vibration properties of the structures. Recently, Chopra and Coel(2001) derived uncoupled inelastic dynamic equation of motion with several assumptions in the pushover analysis. By using this approach, pushover analysis for each mode is carried out and modal pushover analysis method, which can consider higher mode effects of the building, was suggested. The principle objective of this study is to introduced the modal pushover analysis by Chopra et al.(2001) and investigated the applicability and validity of this method for the steel moment frames subjected to various earthquake ground motions.

  • PDF

Seismic Performance Evaluation of Special Reinforced Concrete Moment Resisting Frames With Hybrid Slit-Friction Damper (복합 슬릿-마찰 감쇠장치가 적용된 철근 콘크리트 특수 모멘트 저항골조의 내진성능 평가)

  • Lee, Joon-Ho;Kim, Gee-Cheol;Kim, Jin-Koo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • This study develops a new hybrid passive energy dissipation device for seismic rehabilitation of an existing structure. The device is composed of a friction damper combined with a steel plate with vertical slits as a hysteretic damper. Analytical model is developed for the device, and the capacity of the hybrid device to satisfy a given target performance is determined based on the ASCE/SEI 7-10 process. The effect of the device is verified by nonlinear dynamic analyses using seven earthquake records. The analysis results show that the dissipated inelastic energy is concentrated on the hybrid damper and the maximum interstory drift of the SMRF with damping system satisfies the requirement of the current code.

A New Method for Approximation of Linear System in Frequency Domain (주파수영역에서 선형시스템 간략화를 위한 새로운 방법)

  • Kwon, Oh-Shin
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.583-589
    • /
    • 1987
  • A new approximation method is proposed for the linear model reduction of high order dynamic systems. This mehtod is based upon the denominator table(D-table) and time moment-matching technique. The denominator table(D-table) is used to obtain the denominator polynomial of reduced-order model, and the numerator polynomial is obtained by time moment-matching method. This proposed method does not require the calculation of the alpha-beta expansion and reciprocal transformation which should be calculadted by Routh approximation method. The advantages of the proposed method are that it is computationally every attractive better than Routh approximation method and the reduced model is stable Il the original system is stable.

  • PDF

Eigenvalue and Frequency Response Analyses of a Hard Disk Drive Actuator Using Reduced Finite Element Models (축소된 유한요소모델을 이용한 하드디스크 구동부의 고유치 및 주파수응답 해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.541-549
    • /
    • 2007
  • In the case of control for mechanical systems, it is highly useful to be able to provide a compact model of the mechanical system to control engineers using the smallest number of state variables, while still providing an accurate model. The reduced mechanical model can then be inserted into the complete system models and used for extended system-level dynamic simulation. In this paper, moment-matching based model order reductions (MOR) using Krylov subspaces, which reduce the number of degrees of freedom of an original finite element model via the Arnoldi process, are presented to study the eigenvalue and frequency response problems of a HDD actuator and suspension system.