DOI QR코드

DOI QR Code

Eigenvalue and Frequency Response Analyses of a Hard Disk Drive Actuator Using Reduced Finite Element Models

축소된 유한요소모델을 이용한 하드디스크 구동부의 고유치 및 주파수응답 해석

  • 한정삼 (안동대학교 기계공학부)
  • Published : 2007.05.01

Abstract

In the case of control for mechanical systems, it is highly useful to be able to provide a compact model of the mechanical system to control engineers using the smallest number of state variables, while still providing an accurate model. The reduced mechanical model can then be inserted into the complete system models and used for extended system-level dynamic simulation. In this paper, moment-matching based model order reductions (MOR) using Krylov subspaces, which reduce the number of degrees of freedom of an original finite element model via the Arnoldi process, are presented to study the eigenvalue and frequency response problems of a HDD actuator and suspension system.

Keywords

References

  1. Han, J. S., 2006, 'Efficient Vibration Simulation Using Model Order Reduction,' Transactions of the KSME A, Vol. 30, No. 3, pp. 310-317 https://doi.org/10.3795/KSME-A.2006.30.3.310
  2. Su, T. J. and Craig, Jr. R. R., 1991, 'Krylov Model Reduction Algorithm for Undamped Structural Dynamics Systems,' J. Guid. Control Dyn., Vol. 14, pp. 1311-1313 https://doi.org/10.2514/3.20789
  3. Freund, R. W., 2000, 'Krylov-Subspace Methods for Reduced-Order Modeling in Circuit Simulation,' J. Comput. Appl. Math., Vol. 123, pp. 395-421 https://doi.org/10.1016/S0377-0427(00)00396-4
  4. Han, J. S., Rudnyi, E. B. and Korvink, J. G., 2005, 'Efficient Optimization of Transient Dynamic Problems in MEMS Devices Using Model Order Reduction,' J. Micromech. Microeng., Vol. 15, pp. 822-832 https://doi.org/10.1088/0960-1317/15/4/021
  5. Rudnyi, E. B. and Korvink, J. G., 2002, 'Automatic Model Reduction for Transient Simulation of MEMS-Based Devices,' Sensors Update, Vol. 11, pp. 3-33 https://doi.org/10.1002/seup.200211105
  6. Bechtold, T., Rudnyi, E. B., Korvink, J. G., Graf, M. and Hierlemann, A., 2005, 'Connecting Heat Transfer Macromodels for Array MEMS Structures,' J. Micromech. Microeng. Vol. 15, pp. 1205-1214 https://doi.org/10.1088/0960-1317/15/6/010
  7. Bechtold, T., Rudnyi, E. B. and Korvink, J. G., 2005, 'Error Indicators for Fully Automatic Extraction of Heat-Transfer Macromodels for MEMS,' J. Micromech. Microeng., Vol. 15, pp. 1205-1214 https://doi.org/10.1088/0960-1317/15/3/002
  8. Villemagne, C. D. and Skelton, R. E., 1987, 'Model Reduction Using a Projection Formulation,' Int. J. Control, Vol. 46, pp. 2141-2169 https://doi.org/10.1080/00207178708934040
  9. Salimbahrami, B. and Lohmann, B., 2006, 'Order Reduction of Large Scale Second-Order Systems Using Krylov Subspace Methods,' Linear Algebra and its Applications, Vol. 415, pp. 385-405 https://doi.org/10.1016/j.laa.2004.12.013
  10. Bai, Z., Meerbergen, K. and Su, Y., 2005, 'Arnoldi Methods for Structure-Preserving Dimension Reduction of Second-Order Dynamical Systems,' Springer Lecture Notes in Computational Science and Engineering, Vol. 45, pp.173-189 https://doi.org/10.1007/3-540-27909-1_7
  11. Rudnyi, E. and Korvink, J., 2006, 'Model Order Reduction for Large Scale Engineering Models Developed in ANSYS,' Lecture Notes in Computer Science, Vol. 3732, pp. 349-356 https://doi.org/10.1007/11558958_41
  12. Hatch, M., 2001, 'Vibration Simulation Using Matlab and ANSYS,' Chapman & Hall/CRC
  13. Salimbahrami, B., Lohmann, B. and Eid, R., 2006, 'Order Reduction of Second Order Systems with Proportional Damping,' Book of Abstracts for the Joint GAMM-SIAM Conference on Applied Linear Algebra, July 24-27, Dusseldorf, Germany, pp. 168
  14. Watkins, D. S., 2002, 'Fundamentals of Matrix Computations,' John Wiley & Sons, Inc.
  15. ANSYS, 2004, ANSYS Theory Reference 9.0, SAS IP, Inc.
  16. Matrix Market, http://math.nist.gov/MatrixMarket/, 2007
  17. Wolfram Research, Inc., http://www.wolfram.com. 2007
  18. Bathe, K. J., 1996, 'Finite Element Procedures,' Prentice-Hall, Inc.
  19. The MathWorks, Inc., http://www.mathworks.com, 2007

Cited by

  1. Comparison of Projection-Based Model Order Reduction for Frequency Responses vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-A.2014.38.9.933
  2. Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method vol.33, pp.9, 2009, https://doi.org/10.3795/KSME-A.2009.33.9.878
  3. Efficient Modal Analysis of Prestressed Structures via Model Order Reduction vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-A.2011.35.10.1211