• Title/Summary/Keyword: dynamic modal analysis

Search Result 933, Processing Time 0.026 seconds

Frequency variation in construction stages and model validation for steel buildings

  • Aras, Fuat
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.647-662
    • /
    • 2016
  • This study aims to monitor the variation of modal frequencies of steel buildings during their construction sequence. In this respect, construction of a steel building is followed by vibration based measurements. The monitored building is a three-story educational building within a building group whose structural system consists of steel moment resisting steel frames and eccentric braces. Five different acceleration measurements in two perpendicular directions are taken on five different construction stages, starting from the erection of the columns and beams ending with the completion of the construction. The recorded measurements are transferred into frequency domain and the dominant frequencies for each case have been determined. The change in the dominant frequencies is evaluated with the existing construction stages and performed constructional works between the stages. The last measurement, performed on the building in service, revealed the first two dominant frequencies as mutual in X and Y direction, showing that these dynamic modes are torsional modes. This result is investigated by numerical analysis performed with finite element model of the building constructed for design purpose. Lower frequencies and different mode shapes are determined from numerical analysis. The reason of lower frequencies is discussed and the vibration survey is extended to determine the effects of an adjacent building. The results showed that the building is in strong relation with an adjoining building in spite of a designed construction joint.

Hydroelastic vibration analysis of liquid-contained rectangular tanks

  • Jeong, Kyeong-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.665-688
    • /
    • 2011
  • This paper presents a theoretical analysis for the free vibration of rectangular tanks partially filled with an ideal liquid. Wet dynamic displacements of the tanks are approximated by combining the orthogonal polynomials satisfying the boundary conditions, since the rectangular tanks are composed of four rectangular plates. The classical boundary conditions of the tanks at the top and bottom ends are considered, such as clamped, simply supported, and clamped-free boundary conditions. As the facing rectangular plates are assumed to be geometrically and structurally identical, the vibration modes of the facing plates of the tanks can be divided into two categories: symmetric and antisymmetric modes with respect to the planes passing through the center of the tanks and perpendicular to the free liquid surface. The liquid displacement potentials satisfying the Laplace equation and liquid boundary conditions are derived, and the wet dynamic modal functions of a quarter of the tanks can be expanded by the finite Fourier transform for compatibility requirements along the contacting surfaces between the tanks and liquid. An eigenvalue problem is derived using the Rayleigh-Ritz method. Consequently, the wet natural frequencies of the rectangular tanks can be extracted. The proposed analytical method is verified by observing an excellent agreement with three-dimensional finite element analysis results. The effects of the liquid level and boundary condition at the top and bottom edges are investigated.

High-frequency force balance technique for tall buildings: a critical review and some new insights

  • Chen, Xinzhong;Kwon, Dae-Kun;Kareem, Ahsan
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.391-422
    • /
    • 2014
  • The high frequency force balance (HFFB) technique provides convenient measurements of integrated forces on rigid building models in terms of base bending moments and torque and/or base shear forces. These base moments or forces are then used to approximately estimate the generalized forces of building fundamental modes with mode shape corrections. This paper presents an analysis framework for coupled dynamic response of tall buildings with HFFB technique. The empirical mode shape corrections for generalized forces with coupled mode shapes are validated using measurements of synchronous pressures on a square building surface from a wind tunnel. An alternative approach for estimating the mean and background response components directly using HFFB measurements without mode shape corrections is introduced with a discussion on higher mode contributions. The uncertainty in the mode shape corrections and its influence on predicted responses of buildings with both uncoupled and coupled modal shapes are examined. Furthermore, this paper presents a comparison of aerodynamic base moment spectra with available data sets for various tall building configurations. Finally, e-technology aspects in conjunction with HFFB technique such as web-based on-line analysis framework for buildings with uncoupled mode shapes used in NALD (NatHaz Aerodynamic Loads Database) is discussed, which facilitates the use of HFFB data for preliminary design stages of tall buildings subject to wind loads.

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

Structural Characteristic Analysis of a Centerless Grinding Machine with Concrete Bed (콘크리트 베드를 이용한 무심연삭기의 구조특성 해석)

  • 김석일;성하경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.32-36
    • /
    • 2002
  • This paper presents the structural characteristic analysis of a centerless grinding machine with concrete bed. The centerless grinding machine is composed of grinding wheel head, regulating wheel head, concrete bed, wheel dresser and so on. Especially, the concrete bed is introduced to improve the static, dynamic and thermal characteristics of the centerless grinding machine. The structural analysis model of centerless grinding machine is constructed by the finite element method, and the structural characteristics in the design stage are estimated based on the structural deformation and harmonic response under the various testing conditions related to gravity force and directional farces

  • PDF

Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient (유연도 영향계수법을 이용한 접촉 결합 부의 모델링)

  • Cho Seong-Wook;Oh Je-Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.128-135
    • /
    • 2006
  • Rational dynamic modeling and analysis method f3r complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by using the influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method, the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model could be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models, which demonstrated the practical applicability of the proposed method.

Dynamic Behavior Analysis of Scroll Compressor (스크롤 압축기의 동적 거동 해석)

  • Chun, Seung-woo;Park, Sung-jun
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.49-54
    • /
    • 2012
  • These conventional reciprocating compressor(reciprocating type compressor) or household refrigerators and car air conditioning rotary compressor, rotary compressor, has been used by a reciprocating piston torque variability and the deepening of the vibration problem, the suction valve and discharge valvein this study, as a result of the losses in the current use of the scroll compressor, scroll compressor with the features of low noise, high efficiency, small size, light weight, has increased. fixed Scroll(fixed scroll) scroll compressor with orbiting scroll (rotating scroll) vibration experiments were performed in order to identify the vibration characteristics of the structure of the Analysis was performed using the commercial finite element program(ANSYS) for the sake of comparison, the experimental results using a finite element model of research about the natural vibration characteristics due to a material change.

  • PDF

Analysis of Simply Supported Rectangular Plate Using Spectral Finite Element Method (스펙트럴유한요소법을 이용한 네 변이 단순지지 된 직사각형평판의 진동해석)

  • Jo, Kyung-Lim;Hong, Suk-Yoon;Song, Ji-Hun;Kim, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.85-89
    • /
    • 2005
  • For the analysis of a vibrating two dimensional structure such as the simply supported rectangular plate, Spectral Finite Element Method (SFEM) has been studied. Under the condition that two parallel edges are simply supported at least and the other two edges can be arbitrary, Spectral Finite Element has been developed. Using this element SFEM is applied to the vibrating rectangular plate which all edges are simply supported, and obtain the frequency response function in frequency domain and the dynamic response in time domain. To evaluate these results normal mode method and finite element method (FEM) are also accomplished and compared. It is seen that SFEM is more powerful analysis tool than FEM in high frequency range.

  • PDF

Pushover Analysis for Nonlinear Seismic Response of Reinforced Concrete Mixed Building Structures (철근콘크리트 복합구조물의 비선형 지진응답산정을 위한 Pushover해석)

  • Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.631-638
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}$ and/or ductility ratio $\mu$ from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method.

  • PDF

Vibration reduction of provision crane in a ship by structural dynamic modification (구조변경을 통한 선박용 Provision Crane의 진동저감)

  • 김극수;조성재;최수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.433-437
    • /
    • 2004
  • A provision crane is generally installed on the upper deck to the rear of the accommodation of the ship in order to load and unload engine part or something heavy. There are two types of provision cranes: one is jib-type and the other is monorail-type. So the natural frequency of the jib-type crane equipment is low, therefore, there are some possibility of resonance between crane structure and the main excitation sources of the ship in normal operating range. This study describe a vibration reduction technique for provision crane by applying a proper countermeasure through finite element analysis and modal test. In order to find out weak point in design of provision crane, a sensitive analysis has been performed.

  • PDF