• Title/Summary/Keyword: dynamic modal analysis

Search Result 933, Processing Time 0.03 seconds

Dynamic behavior of cracked ceramic reinforced aluminum composite beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.387-393
    • /
    • 2022
  • This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.

Vibration behavior of cracked ceramic reinforced aluminum composite fixed beams

  • Abdellatif Selmi
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.583-593
    • /
    • 2024
  • The present paper deals with the dynamic analysis of cracked ceramic-reinforced aluminum composite fixed beams by using a method based on changes in modal strain energy. Mechanical characteristics of composite materials of the beams are predicted through Mori-Tanaka micromechanical scheme. A Comparative study and numerical simulations involve various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. The obtained results prove the important effects of these parameters on intact and cracked ceramic aluminum beams.

Tension Estimation for Hanger Cables on a Suspension Bridge Using Image Signals (영상신호를 이용한 현수교 행어케이블의 장력 추정)

  • Kim, Sung-Wan;Yun, Da-Woon;Park, Si-Hyun;Kong, Min-Joon;Park, Jae-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.112-121
    • /
    • 2020
  • In suspension bridges, hanger cables are the main load-supporting members. The tension of the hanger cables of a suspension bridge is a very important parameter for assessing the integrity and safety of the bridge. In general, indirect methods are used to measure the tension of the hanger cables of a suspension bridge in traffic use. A representative indirect method is the vibration method, which extracts modal frequencies from the cables' responses and then measures the cable tension using the cables' geometric conditions and the modal frequencies. In this study, the image processing technique is applied to facilitate the estimation of the dynamic responses of the cables using the image signal, for which a portable digital camcorder was used due to its convenience and cost-efficiency. Ambient vibration tests were conducted on a suspension bridge in traffic use to verify the validity of the back analysis method, which can estimate the tension of remote hanger cables using the modal frequencies as a parameter. In addition, the tension estimated through back analysis method, which was conducted to minimize the difference between the modal frequencies calculated using finite element analysis of the hanger cables and the measured modal frequencies, was compared with that measured using the vibration method.

Modal Analysis and Experiment of a Simply-supported Beam with Non-uniform Cross Sections (불균일 단면을 갖는 단순지지 보의 모달해석 및 실험)

  • Kim, In-Woo;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8654-8664
    • /
    • 2015
  • Beam-type structures with non-uniform cross sections are widely used in mechanical, architectural, and civil engineering fields. This paper deals with dynamic characteristics and vibration problems. Governing equations are first derived by using local coordinates. Their solutions are then assumed by using Galerkin's mode summation method. Bisection method is also applied in solving the determinant of the matrix which can provide natural frequencies. Whereas finite element methods adopt admissible functions satisfying only geometric boundary condition, in this study we apply Galerkin's mode summation method which uses eigen-functions satisfying both governing equations and boundary conditions. Modal analysis and experimental tests are finally performed using simply-supported beams with four different non-uniform cross-sections. Our analytical results then show good agreement with experimental ones.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Reduced wavelet component energy-based approach for damage detection of jacket type offshore platform

  • Shahverdi, Sajad;Lotfollahi-Yaghin, Mohammad Ali;Asgarian, Behrouz
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.589-604
    • /
    • 2013
  • Identification of damage has become an evolving area of research over the last few decades with increasing the need of online health monitoring of the large structures. The visual damage detection can be impractical, expensive and ineffective in case of large structures, e.g., offshore platforms, offshore pipelines, multi-storied buildings and bridges. Damage in a system causes a change in the dynamic properties of the system. The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals. Most of vibration-based damage detection methods require modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such good sensitive indication of structural damage. Identification of damaged jacket type offshore platform members, based on wavelet packet transform is presented in this paper. The jacket platform is excited by simple wave load. Response of actual jacket needs to be measured. Dynamic signals are measured by finite element analysis result. It is assumed that this is actual response of the platform measured in the field. The dynamic signals first decomposed into wavelet packet components. Then eliminating some of the component signals (eliminate approximation component of wavelet packet decomposition), component energies of remained signal (detail components) are calculated and used for damage assessment. This method is called Detail Signal Energy Rate Index (DSERI). The results show that reduced wavelet packet component energies are good candidate indices which are sensitive to structural damage. These component energies can be used for damage assessment including identifying damage occurrence and are applicable for finding damages' location.

Development of fundamental technology for dynamic analysis of the high speed EMU (Electric Multiple Unit) (동력분산형 고속철도 주행성능 동역학 해석을 위한 기반기술 개발)

  • Yoon, Ji-Won;Park, Tae-Won;Jun, Kab-Jin;Park, Sung-Moon;Kim, Jung-Bum
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.380-386
    • /
    • 2008
  • The development of a new railway vehicle is under progress through the Next Generation High-Speed Rail Development Project in Korea. Its aim is to develope fundamental technology of the vehicle that can run over 400km/h. The new distributed traction bogie system, 'HEMU'(High-speed Electric Multiple Unit), will be used and is different from that of previously developed high speed railway vehicles. Previous vehicles adopted push-pull type system, which means one traction-car drives rest all of the vehicle. Due to the difference, investigation on dynamic behavior and its safety evaluation are necessary, as a part of verification of the design specification. In the paper, current progresses of researches are presented. And the High-Speed Railway vehicle system is evaluated for a dynamic characteristic simulation. Proper dynamic models including air-suspension system, wheel-rail, bogie and car-body is developed according to the vehicle simulation scenario. The basic platform for the development of dynamic solver is prepared using nodal, modal coordinate system and wheel-rail contact module. Operating scenario is prepared using commercial dynamic analysis program and used for development of dynamic model, which contains many parts such as carbodies, bogies and suspension systems. Furthermore, international safety standard is applied for final verification of the system. Finally, the reliability of the dynamic model will be verified with test results in the further researches. This research will propose a better solution when test results shows a problem in the parts and elements. Finally, the vehicle that has excellent performance will be developed, promoting academic achievement and technical development.

  • PDF

Free vibration analysis of double split beams (이중 층상균열보의 자유진동해석)

  • Han, B.K;Lee, S.H
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2008-2018
    • /
    • 1997
  • In this study, free vibration analysis of double through-the-width split beam is studied based on the author's earlier work. Each segment which constructs double through-the-width split beam is considered as Timoshenko beam. The effect of coupling between longitudinal and transverse vibration on the natural frequencies of split beams is considered. Data acquisition and modal test of double split beam for clamped-free boundary condition are carried out. Experimental and numerical results obtained by ANSYS were compared with the calculated data by present theory and their comparisons give good agreement with one another. The influences of the size and location of double split, shear deformation, and boundary conditions on the natural frequencies are demonstrated for illustrative purpose. Effects of double split on the dynamic characteristics of beams can be used to detect the size and the location of damages in structures.

Study on 4-degree-of-freedom Mathematical Model for Simulation of Wind Turbine System at Initial Design Stage (풍력발전기 초기단계 모사실험을 위한 4자유도 수학적 모형에 대한 연구)

  • Shin, Yun-Ho;Moon, Seok-Jun;Chung, Tae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.681-689
    • /
    • 2013
  • The commercial tools to simulate the non-linear dynamic characteristics of wind turbine system are various but, the tool take much time to simulate the control algorithm and require many input variables. In this paper, the procedures to derive the simplified 4-degree-of-freedom mathematical model of a 2-MW wind turbine which could be used at the initial design stage of the controller are proposed based on RISO's suggested method. In this model, the 1st tower fore-after bending motion and 1st blade flapping motion are also considered in addition to the rotor-generator rotation motion in the 2-DOF model. The effectiveness of the 4-DOF model is examined comparing with the 2-DOF model and verification of the simplified model is accomplished through modal analysis for whole wind turbine system.

Analysis of the Dynamical Characteristics and Prediction of Stiffness for the Joint between Members (부재간 결합부의 동적 특성 분석 및 강성 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.58-64
    • /
    • 2019
  • This paper describes the analysis of dynamic characteristics and prediction of the stiffness for the joint between structural members. In the process of deriving the governing equations, the stiffness values responsible for the moment and shear force were modelled by using linear and torsional springs in the middle of a clamped-clamped beam. The sensitivities of the natural frequency and modal assurance criterion were investigated as a function of the dimensionless linear and torsional spring stiffness. The reliability of the predictions for the linear and torsional stiffness values was verified by the inverse computations of the stiffness matrix. The predictive and exact theoretical stiffness values were compared for the stiffness element in the finite element formulation, and their results show an excellent correlation. It is strongly anticipated that although the proposed methodology is currently limited to the analytical utilization, it will provide a useful tool to estimate unknown joint stiffness values based on the experimental natural frequency and mode shape.