• Title/Summary/Keyword: dynamic measurement

Search Result 1,884, Processing Time 0.025 seconds

Experimental study of dynamic response of a slider(A Measurement of Slider Dynamic Using DFHT) (슬라이더의 동적거동에 대한 실험적 고찰(DFHT를 이용한 슬라이더의 동적거동 측정 방법))

  • 강태식;김재원;박노열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1117-1121
    • /
    • 2001
  • The dynamic behavior of slider is investigated using Dynamic Flying Height Tester(DFHT). The dependence of slider's dynamic fluctuation on disk velocity is measured, and a comparison is made with the computational result.

  • PDF

A Study on Quality Control and Measurement for Acquisition of Dynamic Friction Coefficient on Back-hand Skin (손등피부의 운동마찰계수 획득을 위한 컨트롤 요소 및 측정에 관한 연구)

  • Lee, Jae-Hoon;Song, Han-Wook;Park, Yon-Kyu;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.3
    • /
    • pp.103-111
    • /
    • 2008
  • Recently, skin diagnosis has been suggested as a promising tool for discrimination of Sasang Constitution, reported by examining the skin characteristics such as thickness, stiffness, slip, and skin textures like wrinkles and furrows. However, the works had a limitation in that clinical decision on the skin characteristics was made by relying upon oriental medicine doctors' subjective sense of touch. In order to objectify the skin diagnosis and claim its efficacy on the discrimination of the Sasang Constitutions, it is necessary to demonstrate its discrimination capability by providing numerical values in terms of physical quantities obtained from measurements using today's sensors and equipment technologies, which motivated this work as a priliminary step towards objectification of skin diagnosis. The skin characteristics focused in this work is the slip property of the back-hand skin that has been exploited using the dynamic friction measurement system. First, curved geometric effects of the back-hand skin on the measured lateral/vertical force signals were estimated using the artificially designed silicon coated structures, which led to a suggestion on a quality controlled experimental design based upon a empirical analysis model. Second, the experimental design thus suggested has been applied to the measurement of dynamic friction coefficients for two healthy male subjects of Taeumin (TE) and Soyangin (SY), respectively. The result shows that the dynamic friction coefficient is less for the SY subject than for the TE subject around the area of the skin used for diagnosis by the oriental medicine doctor, implying the TE subject's skin is more slippery than the SE subject's that is consistent with the oriental medicine doctor's diagnosis. Hopefully, this work can provide guidelines for obtaining quality data in friction measurement to be collected for discussion on the efficacy of the skin diagnosis and its objectification through statistical analysis.

  • PDF

Measurement of Dynamic Characteristics on Structure using Non-marker Vision-based Displacement Measurement System (비마커 영상기반 변위계측 시스템을 이용한 구조물의 동특성 측정)

  • Choi, Insub;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.301-308
    • /
    • 2016
  • In this study, a novel method referred as non-marker vision-based displacement measuring system(NVDMS) was introduced in order to measure the displacement of structure. There are two distinct differences between proposed NVDMS and existing vision-based displacement measuring system(VDMS). First, the NVDMS extracts the pixel coordinates of the structure using a feature point not a marker. Second, in the NVDMS, the scaling factor in order to convert the coordinates of a feature points from pixel value to physical value can be calculated by using the external conditions between the camera and the structure, which are distance, angle, and focal length, while the scaling factor for VDMS can be calculated by using the geometry of marker. The free vibration test using the three-stories scale model was conducted in order to analyze the reliability of the displacement data obtained from the NVDMS by comparing the reference data obtained from laser displacement sensor(LDS), and the measurement of dynamic characteristics was proceed using the displacement data. The NVDMS can accurately measure the dynamic displacement of the structure without the marker, and the high reliability of the dynamic characteristics obtained from the NVDMS are secured.

Automated Measurement System of Carotid Artery Intima-Media Thickness based on Dynamic Programming (다이나믹 프로그래밍 기반 경동맥 내막-중막 두께 자동측정 시스템)

  • Lee, Yu-Bu;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • In this paper, we present a method of detecting the boundary of the intima-media complex for automated measurement based on dynamic programming from carotid artery B-mode ultrasound images and then show the experimental results. We apply the dynamic programming for determining the optimal locations that a cost function is minimized. The cost function includes cost terms which are representing image features such as intensity, intensity gradient and geometrical continuity of the vessel interfaces. Moreover, we improve the boundary continuity by applying the B-spline to smooth the rough boundary due to noise such as speckle, dropout and weak edges. The proposed method has obtained more accurate reproducible results than conventional edge-detection by considering multiple image features and ensures efficient automated measurement by solving the problems of the inter- and intra-observer variability and its inefficiency due to manual measurement.

  • PDF

A Study on the Measurement of Dynamic Stability Derivatives in the Rolling Motion of Aircraft (항공기의 롤운동 동안정미계수 측정에 관한 연구)

  • Cho, Hwan-Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • This paper deals with an experimental technique for the measurement of dynamic stability derivatives in the roll motion of aircraft. Experimental aquisition method for aircraft's dynamic stability derivatives is conducted on the oscillation condition of aircraft model in the subsonic wind tunnel. The oscillation of aircraft model was forced by the oscillation apparatus. The forced oscillation technique is the method getting data from the internal balance inserted into the aircraft model during oscillating it. Dynamic stability derivatives of rolling motion were calculated by data reduction from the measurements of rolling moment, frequency and amplitude of aircraft model due to forced oscillation under wind conditions. Results of experiment is obtained similar one with those of roll dynamic stability derivatives measured in other institutes.

Study on the Electromagnetic Excitation System for the Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor (초고속 회전체용 공기 포일 베어링의 동특성 계수 측정을 위한 전자석 가진장치에 관한 연구)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.18-25
    • /
    • 2013
  • Recently the requirement of long-term mobile energy source for mobile robot or small-sized unmanned vehicle is highly increased, and the micro turbine generator(MTG) which is known to have high energy and power density is under development. MTG is designed to have air foil bearing and high speed rotor of which operating speed is 400,000rpm. In the development stage of high speed rotor and bearing, stability analysis for the full operational speed range is essential and the dynamic coefficients such as stiffness and damping coefficients of bearing depending on the rotational speed are required for that. Although perturbation method is usually used to identify the dynamic coefficients, it's not easy to give the perturbation to the high speed rotating rotor. In this study, we present the dynamic coefficients measurement system for air foil bearing which consists of electromagnets, gap sensors, high speed motor and controller. This measurement system can exert the sine sweep force to the rotor-bearing, measure the displacement of rotor and get FRF(Frequency response function) of rotor-bearing. The least square estimation method is applied to identify the dynamic coefficients of bearing from the measured frequency response at the different rpm and the identified dynamic coefficients for the wide rotational speed range are presented.

Effects of Dynamic Balance Exercise on Pain, Functional level, and Psychosocial Level in Patients with Non-specific Chronic Neck Pain (비특이성 만성 경부통 환자에게 적용한 동적 균형 운동이 통증과 기능적 수준, 심리사회적 수준에 미치는 효과)

  • Yu-hui Kwon;Suhn-yeop Kim
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • Background: Patients with neck pain develop instability due to muscle imbalance, decreased proprioception, and balance disorders. Studies have examined various exercise methods as treatment methods, but few studies have compared the effects of cervical stabilization exercise and dynamic balance exercise. The purpose of this study was to investigate the effects of dynamic balance exercise on pain, functional level, and psychosocial level in patients with non-specific chronic neck pain. Methods: Thirty-four non-specific chronic neck pain patients were randomly assigned to the experimental group (EG, n=17) and control group (CG, n=17); the cervical stabilization exercise and dynamic balance exercise program were applied to the EG; and only the cervical stabilization exercise program was applied to the CG. The intervention was conducted twice a week, for six weeks. Assessment items evaluated pain, dysfunction (Korean version neck disability index), range of motion, craniocervical flexion test, cervical deep flexor endurance test, and psychosocial level. Data analysis was performed using intention-to-treat analysis as assigned. To analyze differences in the items assessed in the two groups, we used a repeated measures analysis of variance with an interaction between group (EG, CG) and time point (baseline, 6 weeks, 12 weeks). Results: The endurance of the cervical flexor muscles between the group and the measurement point after intervention (p<.05). Both groups showed significantly improved endurance between time points after the intervention (p<.05), with the EG showing a greater change than the CG. None of the other measurement items differed in the pattern of change between measurement points. Conclusion: In conclusion, the EG applying a cervical stabilization exercise and a dynamic balance exercise experienced a significant difference in muscle endurance improvement compared to the CG. We propose an exercise intervention program that includes stabilization exercises and dynamic balance exercises for patients with chronic cervical pain who lack muscle endurance.

  • PDF

The Study of Dynamic Flow Control Method using RSST in Video Conference System (화상회의 시스템에서 RSTT를 이용한 동적 흐름제어 기법에 관한 연구)

  • Koo, Ha-Sung;Shim, Jong-Ik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1683-1690
    • /
    • 2005
  • This study examines dynamic flow control method in UDP, analyzes packet loss which is frequently used element in measuring existing dynamic flow control and characteristics of round trip time, and proposes a new method of measurement, RSST. The algorithm that uses the proposed RSST enables accurate measurement of network status by considering both the currently measured network status and the past history of network status in controlling the transmission rate. For comparison study, a network status measurement software program that displays detailed information about volume of transmission generation of network status, and flow pattern of network was developed. The performance test shows that the proposed algorithm can better adjust to network condition in terms of low pack loss rate over existing algorithms.

Multi-point Dynamic Displacement Measurements of Structures Using Digital Image Correlation Technique (Digital Image Correlation기법을 이용한 구조물의 다중 동적변위응답 측정)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • Recently, concerns relating to the maintenance of large structures have been increased. In addition, the number of large structures that need to be evaluated for their structural safety due to natural disasters and structural deterioration has been rapidly increasing. It is common for the structural characteristics of an older large structure to differ from the characteristics in the initial design stage, and changes in dynamic characteristics may result from a reduction in stiffness due to cracks on the materials. The process of deterioration of such structures enables the detection of damaged locations, as well as a quantitative evaluation. One of the typical measuring instruments used for the monitoring of bridges and buildings is the dynamic measurement system. Conventional dynamic measurement systems require considerable cabling to facilitate a direct connection between sensor and DAQ logger. For this reason, a method of measuring structural responses from a remote distance without the mounted sensors is needed. In terms of non-contact methods that are applicable to dynamic response measurement, the methods using the doppler effect of a laser or a GPS are commonly used. However, such methods could not be generally applied to bridge structures because of their costs and inaccuracies. Alternatively, a method using a visual image can be economical as well as feasible for measuring vibration signals of inaccessible bridge structures and extracting their dynamic characteristics. Many studies have been conducted using camera visual signals instead of conventional mounted sensors. However, these studies have been focused on measuring displacement response by an image processing technique after recording a position of the target mounted on the structure, in which the number of measurement targets may be limited. Therefore, in this study, a model experiment was carried out to verify the measurement algorithm for measuring multi-point displacement responses by using a DIC (Digital Image Correlation) technique.

Influence of Heart Rate and Innovative Motion-Correction Algorithm on Coronary Artery Image Quality and Measurement Accuracy Using 256-Detector Row Computed Tomography Scanner: Phantom Study

  • Jeong Bin Park;Yeon Joo Jeong;Geewon Lee;Nam Kyung Lee;Jin You Kim;Ji Won Lee
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Objective: To investigate the efficacy of motion-correction algorithm (MCA) in improving coronary artery image quality and measurement accuracy using an anthropomorphic dynamic heart phantom and 256-detector row computed tomography (CT) scanner. Materials and Methods: An anthropomorphic dynamic heart phantom was scanned under a static condition and under heart rate (HR) simulation of 50-120 beats per minute (bpm), and the obtained images were reconstructed using conventional algorithm (CA) and MCA. We compared the subjective image quality of coronary arteries using a four-point scale (1, excellent; 2, good; 3, fair; 4, poor) and measurement accuracy using measurement errors of the minimal luminal diameter (MLD) and minimal luminal area (MLA). Results: Compared with CA, MCA significantly improved the subjective image quality at HRs of 110 bpm (1.3 ± 0.3 vs. 1.9 ± 0.8, p = 0.003) and 120 bpm (1.7 ± 0.7 vs. 2.3 ± 0.6, p = 0.006). The measurement error of MLD significantly decreased on using MCA at 110 bpm (11.7 ± 5.9% vs. 18.4 ± 9.4%, p = 0.013) and 120 bpm (10.0 ± 7.3% vs. 25.0 ± 16.5%, p = 0.013). The measurement error of the MLA was also reduced using MCA at 110 bpm (19.2 ± 28.1% vs. 26.4 ± 21.6%, p = 0.028) and 120 bpm (17.9 ± 17.7% vs. 34.8 ± 19.6%, p = 0.018). Conclusion: Motion-correction algorithm can improve the coronary artery image quality and measurement accuracy at a high HR using an anthropomorphic dynamic heart phantom and 256-detector row CT scanner.