• Title/Summary/Keyword: dynamic measurement

Search Result 1,893, Processing Time 0.038 seconds

Deformation Behavior of Curling Strips on Tearing Tubes (테어링 튜브 컬의 변형 거동 예측 기법 연구)

  • Choi, Ji Won;Kwon, Tae Soo;Jung, Hyun Seung;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1053-1061
    • /
    • 2015
  • This paper discusses the analysis of the curl deformation behavior when a dynamic force is applied to a tearing tube installed on a flat die to predict the energy absorption capacity and deformation behavior. The deformation of the tips of the curling strips was obtained when the curl tips and tube body are in contact with each other, and a formula describing the energy dissipation rate caused by the deformation of the curl tips is proposed. To improve this formula, we focused on the variation of the curl radius and the reduced thickness of the tube. A formula describing the mean curl radius is proposed and verified using the curl radius measurement data of collision test specimens. These improved formulas are added to the theoretical model previously proposed by Huang et al. and verified from the collision test results of a tearing tube.

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소모델수정)

  • Kim, Hack-Jin;Yu, Eun-Jong;Kim, Ho-Geun;Lee, Sang-Hyun;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.647-652
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).

  • PDF

The Measurement of Coastal Sand Dune's Height using Digital Photogrammetry (디지털 사진측량에 의한 해안사구의 고도값 측정)

  • 김민호;유근배;조봉환
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.317-329
    • /
    • 2002
  • Coastal landforms such as sand beach and coastal sand dune are changing dynamically, and the research about them is being conducted. Conventionally the leveling method has been applied to measuring heights of dynamic morphological surface in coastal landforms. We applied the photograrmmetric method which was not considered to measure the heights on coastal sand dune’s profile to calculating the heights of coastal sand dune; that is, the heights of unknown points on coastal sand dune’s profile was reckoned from the digital photographs’stereo pairs through bundle adjustment and backward transform of collinearity condition equation. we used six GCPs to perform bundle adjustment. After backward transform the error of heights between surveyed value and computed value was estimated around 10cm. In general, the pole is not adamantly fixed on the surface of coastal sand dune because of its softness, and then the disturbance of coastal sand dune adjoining surveyed area can be made in small area. Digital photogrammetry can solve the problem which conventional leveling method has, and be replaced it.

  • PDF

A Study on Real-time State Estimation for Smart Microgrids (스마트 마이크로그리드 실시간 상태 추정에 관한 연구)

  • Bae, Jun-Hyung;Lee, Sang-Woo;Park, Tae-Joon;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.419-424
    • /
    • 2012
  • This paper discusses the state-of-the-art techniques in real-time state estimation for the Smart Microgrids. The most popular method used in traditional power system state estimation is a Weighted Least Square(WLS) algorithm which is based on Maximum Likelihood(ML) estimation under the assumption of static system state being a set of deterministic variables. In this paper, we present a survey of dynamic state estimation techniques for Smart Microgrids based on Belief Propagation (BP) when the system state is a set of stochastic variables. The measurements are often too sparse to fulfill the system observability in the distribution network of microgrids. The BP algorithm calculates posterior distributions of the state variables for real-time sparse measurements. Smart Microgrids are modeled as a factor graph suitable for characterizing the linear correlations among the state variables. The state estimator performs the BP algorithm on the factor graph based the stochastic model. The factor graph model can integrate new models for solar and wind correlation. It provides the Smart Microgrids with a way of integrating the distributed renewable energy generation. Our study on Smart Microgrid state estimation can be extended to the estimation of unbalanced three phase distribution systems as well as the optimal placement of smart meters.

  • PDF

The Detection Distance of Colored Target using Various Automotive Headlamps

  • Kim, Jung-Yong;Lee, Ho-Sang;Min, Seung-Nam;Lee, Min-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.421-426
    • /
    • 2012
  • As headlamp technology advances, newly developed various headlamps were introduced in the market. The objective of this study is to quantitatively analyze the detection distance of the recently developed LED headlamps and existing headlamps, complying with specific technical standard. Background: The detection distance of headlamps is very important to prevent automobile accident at night time. The studies of detection distance of LED, Halogen and HID headlamp have been conducted, but no study has shown the detection distance of pedestrian target with various colors (Black, White, Blue). Method: The experiment of detection distance was conducted with 30 people, which divide into 2 groups as 15 men and 15 women. Automatic transferable target on the rail was manufactured in order to reduce the error of study's result, and ANOVA also conducted to analyze the main effect with sign color, sex and headlamp classified by detection distance. In addition, the luminance by average detection distance was measured as well. Results: The detection distance of headlamps was HID > LED > Halogen. The luminance measure of LED headlamp was lower than HID and Halogen headlamps. Conclusion: The headlamp performs a very significant role for safety at night time but it needs to be improved through assessment of visual characteristics. Also, it needs to be suggested the need of test method for dynamic detection distance concerning technical development is suggested.

Accurate Prediction of the Pricing of Bond Using Random Number Generation Scheme (난수 생성기법을 이용한 채권 가격의 정확한 예측)

  • Park, Ki-Soeb;Kim, Moon-Seong;Kim, Se-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.19-26
    • /
    • 2008
  • In this paper, we propose a dynamic prediction algorithm to predict the bond price using actual data set of treasure note (T-Note). The proposed algorithm is based on term structure model of the interest rates, which takes place in various financial modelling, such as the standard Gaussian Wiener process. To obtain cumulative distribution functions (CDFs) of actual data for the interest rate measurement used, we use the natural cubic spline (NCS) method, which is generally used as numerical methods for interpolation. Then we also use the random number generation scheme (RNGS) to calculate the pricing of bond through the obtained CDF. In empirical computer simulations, we show that the lower values of precision in the proposed prediction algorithm corresponds to sharper estimates. It is very reasonable on prediction.

  • PDF

Effect of Abdominal Compression Belt on Static Balance During One Leg Standing in Low Back Pain Patients (한 발 서기 시 복부 압박 벨트가 요통 환자의 정적 균형에 미치는 영향)

  • Ju, Hwa-Phyeoung;Choi, Sol-A;Jeong, Da-Hye;Han, Na-Rin;Woo, Young-Keun
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Purpose: This study aimed to measure static balance of low back pain patients while one-leg standing in abdominal compression belts. Methods: The study included 40 adult males and females at J university, divided into a low back pain patient group and a normal group through the Oswestry disability questionnaire (ODQ). The subjects were instructed to hold a one-leg standing posture for 15 seconds on a balance measurement plate while wearing an abdominal compression belt. Shifting distance (0.1 cm), mean velocity (cm/s), pressure, and contact area were analyzed using BioRescue (BioRescue, RMINGEIEIRIE, Rodez, France). The average value was used to measure the result 3 times for each condition. Results: Both normal and low back pain groups significantly decreased in the speed of sway while wearing the abdominal compression belt. Furthermore, the pressure of the center of motion significantly decreased in the low back pain groups while wearing abdominal compression belt. However, there were no significant differences in the speed of sway or the pressure of center of motion between groups after wearing the abdominal pressure belt. Conclusion: These results suggest that abdominal compression belts are one option for improving balance temporarily. However, balance after wearing abdominal compression vests depends on onset of back pain, age, and symptoms of pain in the groups with low back pain. Further research is needed to investigate muscle activity, dynamic balance, and the effect of the period of wearing abdominal compression belts in the variety of low back pain patients.

A Study on the Dynamic Characteristics of Nitrogen Mixed Gas for Thermostatic Expansion Valve Sensing Blub (온도 감지식 팽창밸브 감온통 질소가스 혼합냉매의 동특성 연구)

  • Kim, Si-Young;Koo, Su-Jin;Ju, Chang-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • The pressure and temperature characteristics of mixed refrigerant gases in bulb for thermostatic expansion valve were studied using R22 refrigerant and $N_2$ gases. The characteristics of mixed refrigerant gases were investigated according to pressure variation and the variation of composition ratio of R22 refrigerant and $N_2$ gases in the temperature range of -$15^{\circ}C$~$15^{\circ}C$. The Maximum operating pressure(MOP) of mixed refrigerant gases were showed a tendency to decrease with decreasing the mixing ratio of $N_2$ gas. The characteristics in the case of the mixing ratio of 90:1 for R22 refrigerant and $N_2$ gases were the same result as Reference refrigerant. In addition, the characteristics of the mixed refrigerant gases in the mixing ratio of 90:1 for R22 refrigerant and $N_2$ gases were showed almost linear in the measurement range of pressure-temperature, and the physical properties also were showed similar results with Reference refrigerant. It was able to confirm that a MOP on the thermostatic expansion valve for sensing bulb can be maintained by adjusting the mixing ratio of R22 refrigerant and $N_2$ gases.

On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography (전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구)

  • Hong, Dong-Pyo;Kim, Ho-Jong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology. with valuable suggestions for the future bearing fault detection.

Finite Element Model Updating and System Identification of Reinforced Concrete Specimen (철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정)

  • Kim, H.J.;Yu, E.J.;Kim, H.G.;Chang, K.K.;Lee, S.H.;Cho, S.H.;Chung, L.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).