• Title/Summary/Keyword: dynamic material properties

Search Result 834, Processing Time 0.023 seconds

Importance of particle shape on stress-strain behaviour of crushed stone-sand mixtures

  • Kumara, Janaka J.;Hayano, Kimitoshi
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.455-470
    • /
    • 2016
  • In ballasted railway tracks, ballast fouling due to finer material intrusion has been identified as a challenging issue in track maintenance works. In this research, deformation characteristics of crushed stone-sand mixtures, simulating fresh and fouled ballasts were studied from laboratory and a 3-D discrete element method (DEM) triaxial compression tests. The DEM simulation was performed using a recently developed DEM approach, named, Yet Another Dynamic Engine (YADE). First, void ratio characteristics of crushed stone-sand mixtures were studied. Then, triaxial compression tests were conducted on specimens with 80 and 50% of relative densities simulating dense and loose states respectively. Initial DEM simulations were conducted using sphere particles. As stress-strain behaviour of crushed stone-sand mixtures evaluated by sphere particles were different from laboratory specimens, in next DEM simulations, the particles were modeled by a clump particle. The clump shape was selected using shape indexes of the actual particles evaluated by an image analysis. It was observed that the packing behaviour of laboratory crushed stone-sand mixtures were matched well with the DEM simulation with clump particles. The results also showed that the strength properties of crushed stone deteriorate when they are mixed by 30% or more of sand, specially under dense state. The results also showed that clump particles give closer stress-strain behaviour to laboratory specimens than sphere particles.

Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet (레이저 용접된 박판 지르코늄 합금의 피로특성)

  • Jeong, Dong-Hee;Kim, Jae-Hoon;Yoon, Yong-Keun;Park, Joon-Kyoo;Jeon, Kyeong-Rak
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2012
  • The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and maintains geometry from external impact load and cyclic stress by the vibration of nuclear fuel rod, it is necessary to have sufficient strength against dynamic external load and fatigue strength. In this study, the mechanical properties and fatigue characteristics of laser beam welded zircaloy thin sheet are examined. The material used in this study is a zirconium alloy with 0.66 mm of thickness. The fatigue strength under cyclic load was evaluated at stress ratio R=0.1. S-N curves are presented with statistical testing method recommend by JSME- S002 and compared with S-N curves at R.T. and $315^{\circ}C$. As a result of the experimental approach, the design guide of fatigue strength is proposed and the results obtained from this study are expected to be useful data for spacer gird design.

A Parametric Study on the Loading Rate Sensitivity of R/C Element Behavior (R/C 부재의 하중재하속도 변화에 따른 민감성 연구)

  • 심종성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.38-43
    • /
    • 1989
  • An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was uses to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections were also suggested.

  • PDF

Seismic fragility curves of single storey RC precast structures by comparing different Italian codes

  • Beilic, Dumitru;Casotto, Chiara;Nascimbene, Roberto;Cicola, Daniele;Rodrigues, Daniela
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.359-374
    • /
    • 2017
  • The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

Finite Element Analysis for Prediction of Residual Stresses Induced by Shot Peening (쇼트피닝 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Sung, Ki-Deug;Ko, Myung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.198-204
    • /
    • 2001
  • The shot peening is largely used for a surface treatment of metallic components where small spherical pellets called shots are blasted onto the surface with velocities up to 100 m/s. This treatment leads to improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance I the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is the measurement by X-ray diffractometer only. Despite the importance to automobile ad aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, the simulation technique is applied to predict the magnitude ad distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis.

  • PDF

Tool Holder Design and Cutting Force Measurement of Diamond Turning Process (다이아몬드 터닝의 미세 절삭력 측정을 위한 tool holder 설계 및 절삭력 측정)

  • Jeong, S.H.;Kim, S.S.;Do, C.J.;Hong, K.H.;Kim, G.H.;Rui, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.507-512
    • /
    • 2001
  • In this work, tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces.

  • PDF

Structural Dynamics Modification Using Surface Grooving Technique : The Effectiveness of Check board Pattern and Comparison the Algorithm for Initial Starting Point (그루브를 이용한 표면형상변형 동특성 변경법 : 체크무늬 그루브의 효용성과 초기 시작점의 선택 알고리즘에 대한 비교)

  • Park, Mi-You;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.128-131
    • /
    • 2005
  • Structural Dynamics Modification (SDM) is a very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures. changing material properties and shape of structure. Among those of SDM technique, the method to change shape of structure has been mostly relied on engineer's experience and trial-and-error process which are very time consuming. In order to develop a systematic method to change structure shape, surface grooving technique is studied and successfully applied to HDD cover model. To check the effectiveness of this surface grooving technique, the grooved HDD cover design was manufactured using rapid prototyping and experimentally tested to prove the effectiveness of the grooving method as one of SDM techniques. And the modal strain energy and eigenvalue sensitivity method for choosing the initial starting point are compared.

  • PDF

A Dynamic Behavior of Rubber Component with Large Deformation (대변형을 하는 고무 부품의 동적 거동)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.536-541
    • /
    • 2005
  • Large displacement and rigidity about rubber component are expected by nonlinear and large deformation analysis in this study. Rubber is also used by the model of Mooney-Rivlin and the self contact between rubbers is established. There is the friction between rigid body and rubber, wall and floor. The nonlinear simulation analysis used in this study is expected to be widely applied in design, analysis and development of several rubber components which are used in automotive, railroad, and mechanical elements etc. By utilizing this method, time and cost can also be saved in developing new rubber product. The analysis of rubber components requires special material modeling and non-linear finite element analysis tools that are quite different from those used for metallic parts. The objective of this study is to analyze the rubber component with large deformation and non-linear properties.

  • PDF

A Study on the Vibration Behavior of Building Structures due to Undergroud Blasting (지중발파에 의한 건물의 진동 거동에 관한 연구)

  • 조병윤;문형구
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 1996
  • In order to analyze the effects of ground vibration caused by underground blasting having an effect on structure, the particle velocity and acceleration are calculated by using DYNPAK program. The DYNPAK program analyzes nonlinear transient dynamic problem and adopts the very popular and easily implemented, explicit, central difference scheme. In this program, the material behavior is assumed to be elasto-viscoplastic. Using the particle acceleration history, modal analysis method is applied to the forced vibration response of multiple-degree-of-freedom(MDOF) systems using unclupled equations of motion expressed in terms of the system's natural circular frequencies and modal damping factors. AS a means of evaluating the vibration behavior of building structure subjected to underground blasting, the time response of the displacements relative to the ground of five-story building is determined. It is concluded that the amount of explosives consumed per round, the location of structure, the properties of rock medium, the stiffness fo structure, etc. act on the important factors influencing on the safety of building and that the response of a structure subjected to a forced excitation can usually be obtained with reasonable accuracy by the modal analysis of only a few mode of the lower frequencies of the system.

  • PDF