• Title/Summary/Keyword: dynamic loading test

Search Result 542, Processing Time 0.036 seconds

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Novel approach to assessing the primary stability of dental implants under functional cyclic loading in vitro: a biomechanical pilot study using synthetic bone

  • Jean-Pierre Fischer;Stefan Schleifenbaum;Felicitas Gelberg;Thomas Barth;Toni Wendler;Sabine Loffler
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.3
    • /
    • pp.189-204
    • /
    • 2024
  • Purpose: This pilot study was conducted to develop a novel test setup for the in vitro assessment of the primary stability of dental implants. This was achieved by characterising their long-term behaviour based on the continuous recording of micromotions resulting from dynamic and cyclic loading. Methods: Twenty screw implants, each 11 mm in length and either 3.8 mm (for premolars) or 4.3 mm (for molars) in diameter, were inserted into the posterior region of 5 synthetic mandibular models. Physiological masticatory loads were simulated by superimposing cyclic buccal-lingual movement of the mandible with a vertically applied masticatory force. Using an optical 3-dimensional (3D) measuring system, the micromotions of the dental crowns relative to the alveolar bone resulting from alternating off-centre loads were concurrently determined over 10,000 test cycles. Results: The buccal-lingual deflections of the dental crowns significantly increased from cycle 10 to cycle 10,000 (P<0.05). The deflections increased sharply during the first 500 cycles before approaching a plateau. Premolars exhibited greater maximum deflections than molars. The bone regions located mesially and distally adjacent to the loaded implants demonstrated deflections that occurred synchronously and in the same direction as the applied loads. The overall spatial movement of the implants over time followed an hourglass-shaped loosening pattern with a characteristic pivot point 5.5±1.1 mm from the apical end. Conclusions: In synthetic mandibular models, the cyclic reciprocal loading of dental implants with an average masticatory force produces significant loosening. The evasive movements observed in the alveolar bone suggest that its anatomy and yielding could significantly influence the force distribution and, consequently, the mechanical behaviour of dental implants. The 3D visualisation of the overall implant movement under functional cyclic loading complements known methods and can contribute to the development of implant designs and surgical techniques by providing a more profound understanding of dynamic bone-implant interactions.

Dynamic Stress/Strain Measurement and Analysis of the Aluminum Alloy Road Wheel through F1 Circuit Ultimate Driving Test (F1 서킷 극한주행시험을 통한 알루미늄 알로이 휠의 동응력/변형률 계측 및 분석)

  • Lee, Chang Soo;Park, Cheol Soon;Park, Hyung Bae;Jung, Sung Pil;Chung, Won Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.612-617
    • /
    • 2014
  • It is generally known that the automotive road wheel involves the non-proportional multiaxial loading condition, therefore the measuring dynamic stress and strain in driving state is very important to predict an endurance characteristic of the automotive road wheel. In this study, the ultimate driving test using F1 circuit with respect to 2 kinds of velocity conditions have been carried out in order to measure dynamic stress, strain of the wheel and acceleration of a vehicle. Based on the measured results, the characteristics of dynamic stress generation have been analyzed, and factors which have effect on the dynamic stress generation have been studied.

  • PDF

Dynamic Analysis for Bridge Using the Experimental Results of Hysteretic Damping Bearing and Dynapot (교량용 내진 받침의 동특성 실험 결과를 이용한 교량의 해석)

  • 윤정방;박동욱;이동하;안창모
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.465-474
    • /
    • 2001
  • Base Isolation system is an effective design strategy that provides a practical substitute for the seismic design of bridge. In this study, the dynamic tests was performed on HDB (Hysteretic Damping Bearing) and Dynapot. Then, the dynamic analysis was carried out for a bridge using the experimental results to estimate the seismic performance of bearings. Analysis for bridge was performed for four types of earthquake loadings. The result of dynamic test and theoretical analysis indicate that the performance of HDB and Dynapot is appropriate for the earthquake loading.

  • PDF

The influence of dynamic force balance on the estimation of dynamic uniaxial compression strength (암석시료 내 동적하중 분배특성이 동적일축압축강도에 미치는 영향성에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.14-23
    • /
    • 2019
  • It has been an always issue for the blasting or the impact analysis to consider the strength characteristics of the rock materials associate with loading rate dependency. Due to the nature of transient loading, the dynamic rock test requires a careful technique to achieve the stress equilibrium state of the specimen. In this study, to investigate the relationship between the rock dynamic strength and the stress equilibrium state, a series of dynamic uniaxial compression tests for Pocheon granite were performed. As a result, the unbalanced stress state on the specimen can lead to the premature failure on the specimen and the less estimation of dynamic strength characteristic as well as the overestimation of strain rate. Consequently, a careful consideration of rock fracture process to achieve the dynamic force balance on the specimen should be required to make an reasonable evaluation of rock dynamic strength.

Characteristics of Static Loading and Dynamic Loading Tests for Bridge Capability (교량 내하력 평가를 위한 정적재하시험 및 동적재하시험 특성)

  • Lee, Sang Hun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.638-649
    • /
    • 2020
  • Purpose: The objective of this study is to evaluate the load carrying capacity of a target bridge structure based on the simple slab bridge of concrete over 20 years of public service. Method: By performing static loading test and dynamic loading test, the displacement, strain, impact factor, and natural frequency values were measured and evaluated through analysis method. Result: The main results of this study are as follows. First, the maximum displacement and maximum strain of S1 were assessed at 2.917 mm and 44.720 𝜇ε( tensile) and -13.760 𝜇ε(compression), respectively, with S2 maximum displacement and maximum strain being 2.100 mm and 4.870 𝜇ε(tensile), respectively. Second, the maximum measured impact factor was 0.191 in section S1 A-A, and the maximum measured impact factor was 0.155 in section S2 C-C. Third, the natural frequency was assessed at 6.086 Hz, and the measurement was found to be within the range of 6.152 Hz to 6.738 Hz. Conclusion: The tested bridge may be evaluated to show good behavior and characteristics for the design load.

Dynamic Behavior of Unsaturated Decomposed Mudstone Soil (불포화 이암풍화토의 동적거동)

  • 배중선;이주상;김주철;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.541-548
    • /
    • 2001
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it Is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils ulder low and high strain amplitude, For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum degree of saturation under low and strain amplitude is 32 ∼ 37% which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

  • PDF

Rocking behavior of bridge piers with spread footings under cyclic loading and earthquake excitation

  • Hung, Hsiao-Hui;Liu, Kuang-Yen;Chang, Kuo-Chun
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1001-1024
    • /
    • 2014
  • The size of spread footings was found to be unnecessarily large from some actual engineering practices constructed in Taiwan, due to the strict design provisions related to footing uplift. According to the earlier design code in Taiwan, the footing uplift involving separation of footing from subsoil was permitted to be only up to one-half of the foundation base area, as the applied moment reaches the value of plastic moment capacity of the column. The reason for this provision was that rocking of spread footings was not a favorable mechanism. However, recent research has indicated that rocking itself may not be detrimental to seismic performance and, in fact, may act as a form of seismic isolation mechanism. In order to clarify the effects of the relative strength between column and foundation on the rocking behavior of a column, six circular reinforced concrete (RC) columns were designed and constructed and a series of rocking experiments were performed. During the tests, columns rested on a rubber pad to allow rocking to take place. Experimental variables included the dimensions of the footings, the strength and ductility capacity of the columns and the intensity of the applied earthquake. Experimental data for the six circular RC columns subjected to quasi-static and pseudo-dynamic loading are presented. Results of each cyclic loading test are compared against the benchmark test with fixed-base conditions. By comparing the experimental responses of the specimens with different design details, a key parameter of rocking behavior related to footing size and column strength is identified. For a properly designed column with the parameter higher than 1, the beneficial effects of rocking in reducing ductility and the strength demand of columns is verified.

Pseudo-Dynamic Test of Circular Reinforced Concrete Bridge Piers for Seismic Performance (원형 콘크리트 교각의 내진거동에 관한 유사동적 실험)

  • 박종협
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.409-416
    • /
    • 2000
  • This research aims at evaluating the seismic performance of the existing R/C bridge piers which were nonseismically or seismically designed in accordance with the provision of Korea Highway Design Specification. Further experimental investigations have been doing to figure out the retrofitting effects of nonseismic R/C bridge piers confined with glass fiber at the plastic hinge zone. Pseudo-dynamic tests have been carried out on nine scaled R/C column specimens to investigate their hysteretic behavior under earthquake loading, Test parameters are axial load input ground motion confinement steel ration glass fiber and etc,

  • PDF

Full structure pseudo-dynamic test method and application based on OpenSees-OpenFresco-MTS

  • Zhen Tian;Yuan Cheng;Xuechong Ren;Mengmeng Yang
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.173-185
    • /
    • 2024
  • Currently, the electro-hydraulic servo loading control system manufactured by MTS, OpenFresco hybrid test interface software and OpenSees finite element software are widely used in structure laboratories to carry out hybrid test, but there is no relevant public information about full structure pseudo-dynamic test based on the above software and hardware. In order to study the feasibility of using the above software and hardware to carry out full structure pseudo-dynamic test, the full structure pseudo-dynamic virtual experiments of a single degree of freedom (SDOF) structure and a two degrees of freedom (2DOFs) structure are carried out based on the MTS 793 Demo Mode, and the results are respectively compared with the finite element analysis method. The results show that the finite element analysis results and full structure pseudo-dynamic virtual experiment results are highly consistent, which verifies the feasibility of carrying out the full structure pseudo-dynamic test based on the above software and hardware. Then, a three story steel frame full structure pseudo-dynamic test is conducted, and the smooth implementation of full structure pseudo-dynamic test of the three story steel frame further verifies the reliability of thistesting method. The implementation method of carrying out the full structure pseudo-dynamic tests are introduced in detail, which can provide some reference for relevant research.