• Title/Summary/Keyword: dynamic impact velocity

Search Result 249, Processing Time 0.029 seconds

Static and dynamic finite element analysis of honeycomb sandwich structures

  • Triplett, Matt H.;Schonberg, William P.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.95-113
    • /
    • 1998
  • The extensive use of honeycomb sandwich structures has led to the need to understand and analyze their low velocity impact response. Commercially available finite element software provides a possible analysis tool for this type of problem, but the validity of their material properties models for honeycomb materials must be investigated. Three different problems that focus on the effect of differences in honeycomb material properties on static and dynamic response are presented and discussed. The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results are obtained using the ABAQUS final element code and compared against experimental results. The comparison indicates that currently available material properties models for honeycomb materials can be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static and dynamic loading conditions.

Parameter Study for the Analysis of Impact Characteristics considering Dynamic Material Properties (동적 물성치를 고려한 V.I. 충격인자의 영향 분석)

  • Lim, J.H.;Song, J.H.;Huh, H.;Park, W.J.;Oh, I.S.;Choe, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.945-950
    • /
    • 2001
  • Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics. Because the closing velocity is 1-3m/s, the deformation of the material of electrodes depends on the strain rate and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial offset of a wipe spring and virtual fixed spring constant.

  • PDF

Dynamic Response Measurement of the Head Arm Assembly of a Hard Disk Drive by Numerical Analysis and Experiments

  • Parlapalli, Madhusudhana R;Bin, Gu;Dongwei, Shu;Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.22-25
    • /
    • 2008
  • The dynamic response of the head arm assembly (HAA) of a hard disk drive to an impact load was obtained from a 3D non-linear finite element model using ANSYS/LS-DYNA and from experiments using a modified levitation mass method (LMM). In the finite element model, the impact load was created by modeling the mass as a rigid body and making it collide with the HAA. The velocity, displacement, acceleration, and inertial force of the mass were then obtained from the time history data of the finite element analysis. In the LMM, a mass that was levitated with an aerostatic linear bearing, and hence encountered negligible friction, was made to collide with the actuator arm, resulting in a dynamic bending test for the arm. During the collision, the Doppler frequency shift of the laser beam reflected from the mass was accurately measured with an optical interferometer. The velocity, displacement, acceleration, and inertial force of the mass were accurately calculated from the measured time-varying Doppler frequency shift. A good correlation between the experimental data and FEA results was observed. The FEA was also used to investigate the dynamic response of the HAA to impact by different masses.

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

The Effect of Dynamic Visual-Motor Integration Training on the Visual Perception Reaction Velocity (역동적 시각-운동 통합 훈련이 시지각 처리 속도에 미치는 영향)

  • Song, Minok;Lee, Eunsil;Park, Sungho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: This study was conducted to test the impact of The Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity. Dynavision were used to measure data from the participating 24 students(K college). Method : The participants were the 24 students of 'K' College in Busan in there twenties. They were divided into the The Dynamic Visual-Motor integration training group and the control group. To know if the Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity, the Dynamic Visual-Motor integration training was implemented triweekly for 4 weeks. In Dynamic Visual-Motor integration training the ball should be grasped with one hand and threw by an arm. Only the balls threw beyond the objective point were counted. The visual perception reaction velocity and the number of response were measured before and after experiment by Dynavision. Result : Firstly, the visual perception reaction velocity was increased in Dynamic Visual-Motor integration training group compared with control group. Secondly, the number of response was also increased in Dynamic Visual-Motor integration training group compared with control group. Conclusion : As a result of The Dynamic Visual-Motor integration training has an effect on the visual perception reaction velocity and the number of response. The Dynamic Visual-Motor integration training seems to be effective for cerebral apoplexy patient who has visual perceptional disability or cerebral palsy child in training for visual perceptional development or daily living activities development. Study participated by more detailed and practical patients in hospital is needed.

High Speed Impact and Penetration Analysis using Explicit Finite Element Method (외연 유한요소 기법을 사용한 고속충돌 및 관통해석)

  • Paik, Seung-Hoon;Kim, Seung-Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.5-13
    • /
    • 2005
  • The impact of a long-rod penetrator into oblique plates with combined obliquity and yaw is investigated. The study was done using a newly developed three dimensional dynamic and impact analysis code, which uses the explicit finite element method. Through the comparison of simulation result with experimental result and other code's result, the adaptability and accuracy of the developed code is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. As a result of comparison, it has found that deformed shape, residual length and velocity, rotational velocity of long-rod show good agreement with experimental data. Through this study, the applicability and accuracy of the code as a metallic armour system design tool is verified.

The Absorbed Energy of Carbon/Epoxy Composite Laminates Subjected to High-velocity impact in Considering the Loss of Projectile Mass (고속충격을 받는 Carbon/Epoxy 복합재 적층판의 충격체 질량손실을 고려한 흡수에너지 예측)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Kim, Young-A;Woo, Kyeongsik
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.349-354
    • /
    • 2013
  • In this paper, we conducted high velocity impact test for Carbon/Epoxy composite laminates and proposed advanced method for predicting the absorbed energy of composite laminates. During high-velocity impact test, we discovered loss of projectile mass macroscopically using high speed camera, thus we calculated the absorbed energy of composite laminates by taking loss of projectile mass into account. We proposed a model for predicting the absorbed energy of composite laminates subjected to high-velocity impact, the absorbed energy was classified into static energy and dynamic energy. The static energy was calculated by the quasi-static perforation equation that is related to the fiber breakage and static elastic energy. The dynamic energy can be divided by the kinetic energy of deformed specimen and fragment mass. Finally, the predicted absorbed energy considering loss of projectile mass was compared with experimental results.

Dynamic Slant Interface Crack Propagation Behavior under Initial Impact Loading (초기 혼합모드 동적 하중을 받는 경사계면균열의 동적 전파거동)

  • Lee, Eok-Seop;Park, Jae-Cheol;Yun, Hae-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The effects of slant interface in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity. The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamic stress field around the dynamically propagating inclined interface crack tip in the three point bending specimens. The dynamic load is applied by a hammer dropped from 0.08m high without initial velocity. The dynamic crack propagation velocities and dynamic stresses field around the interface crack tips are investigated. Theoretical dynamic isochromatic fringe loops are compared with the experimental reults. It is interesting to note that the crack propagating velocity becomes comparable to the Rayleigh wave speed of the soft material of a specimen when slant angle decreases.

  • PDF

Response Analysis of PSC-I Girder Bridges for Vehicle's Velocity (재하차량 속도에 따른 PSC-I 거더 교량의 거동분석)

  • Park, Moon-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • The response of a bridge can be influenced by span length, bridge's surface condition, vehicle's weight, and vehicle's velocity. It is difficult to predict accurate behavior of a bridge. In the current standard of specifications, such dynamic effect is defined by impact factor and prescribed to consider live load as to increase design load by means of multiplying this value by live load. However, it is not well understood because the Impact factor method differs from every country. Dynamic, static and pseudo-staitic field loading tests on PSC-I girder bridges were carried out to find out the dynamic property of the bridge. This paper is aimed to figure out actual dynamic property of the bridge by using field loading test. An empirical method based on impact factor is widely used and also argued. Displacement and strain response measured from the tests was compared with one from the empirical method. The former seems to be reasonable since it can consider actual response of a bridge through field tests.

Comparison of Longitudinal Wave Velocity in Concrete by Ultrasonic Pulse Velocity Method and Impact-Echo Method (초음파 속도법과 충격반향기법에 의한 콘크리트의 종파 속도 비교)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.98-106
    • /
    • 2003
  • Nondestructive test (NDT) provides much information on concrete without damage of structural functions. Of NDT methods, elastic wave propagation methods, such as ultrasonic pulse velocity (UPV) method and impact-echo (IE) method, have been successfully used to estimate the strength, elastic modulus, and Poisson's ratio of concrete as well as to detect the internal microstructural change and defects. In this study, the concretes with water-binder ratio ranging from 0.27 to 0.50 and fly ash content of 20% were made and then their longitudinal wave velocities were measured by UPV and IE method, respectively. Test results showed that the UPV is greater than the longitudinal wave velocity measured by the If method, i.e., rod-wave velocity obtained from the same concrete cylinder. It was found that the difference between the two types of velocities decreased with increasing the ages of concrete and strength level. Moreover, for the empirical formula, the dynamic Poisson's ratio, static and dynamic moduli of elasticity, and velocity-strength relationship were determined. It was observed that the Poisson's ratio and the modulus of elasticity determined by the dynamic method are greater than those determined by the static test. Consequently, for the more accurate estimation of concrete properties using the elastic wave velocities, the characteristics of these velocities should be understood.