• Title/Summary/Keyword: dynamic excitation

Search Result 923, Processing Time 0.046 seconds

The dynamic response of a prototype steel floor using velocity-source type of excitation

  • Magalhaes, Max D.C.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.371-385
    • /
    • 2013
  • Vibration isolators and anti-vibration mounts are ideal, for example, in creating floating floors for gymnasiums, or performance spaces. However, it is well-known that there are great difficulties on isolating vibration transmission in structural steel components, especially steel floors. Besides, the selection of inertia blocks, which are usually used by engineers as an effective vibration control measure, is usually based on crude methods or the experience of the engineers. Thus, no simple method or indices have been available for assessing the effect of inertia blocks on vibration isolation or stability of vibratory systems. Thus, the aims of this research are to provide further background description using a FE model and present and implement a modal approach, that was validated experimentally, the latter assisting in providing improved understanding of the vibration transmission phenomenon in steel buildings excited by a velocity-source type of excitation. A better visualization of the mean-square velocity distribution in the frequency domain is presented using the concept of modal expansion. Finally, the variation of the mean-square velocity with frequency, whilst varying mass and/or stiffness of the coupled system, is presented.

Local damage detection of a fan blade under ambient excitation by three-dimensional digital image correlation

  • Hu, Yujia;Sun, Xi;Zhu, Weidong;Li, Haolin
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.597-606
    • /
    • 2019
  • Damage detection based on dynamic characteristics of a structure is one of important roles in structural damage identification. It is difficult to detect local structural damage using traditional dynamic experimental methods due to a limited number of sensors used in an experiment. In this work, a non-contact test stand of fan blades is established, and a full-field noncontact test method, combined with three-dimensional digital image correlation, Bayesian operational modal analysis, and damage indices, is used to detect local damage of a fan blade under ambient excitation without use of baseline information before structural damage. The methodology is applied to detect invisible local damage on the fan blade. Such a method has a seemingly high potential as an alternative to detect local damage of blades with complex high-precision surfaces under extreme working conditions because it is a noncontact test method and can be used under ambient excitation without human participation.

The 2nd Excitation Control System of Wound-Rotor Induction Motor with Fly-wheel (Fly-wheel을 갖는 권선형 유도전동기의 2차 여자제어시스템)

  • 오성업;김민태;신기택;최태식;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.535-539
    • /
    • 1999
  • This paper presents the 2nd excitation control of the wound-rotor induction motor with Fly-wheel. In the wound-rotor induction motor, the primary power is controlled by AC excitation which used the secondary power conversion. Based on theory, this paper describes the dynamic response analysis of the wound-rotor induction motor with Fly-wheel and Simulation using MATLAB is performed to verify the proposed control method.

  • PDF

Experiment for Seated Human Body to Vertical/Fore-and-aft/Pitch Excitation (착석자세 인체의 상하/전후/피치 가진 시험)

  • Kim, Jong-Wan;Kim, Ki-Sun;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.656-660
    • /
    • 2009
  • Various dynamic models of seated posture human body have been developed because the importance about the ride comfort assessment of vehicles is highly emphasized from day to day. The dynamic models of human body make possible the simulation of ride comfort assessment by applied to the vehicle dynamic model. Recently, the importance of ride comfort is also regarded to working vehicles such as excavators and the research of the ride comfort assessment for working vehicle is required. Only vertical vibration dominantly occurs on the seat of the private car driving with constant velocity. In contrast, vertical/fore-and-aft/pitch vibration seriously occurs on the seat of the working excavator. So, the dynamic models of seated human body applied to working vehicles should describe the dynamic characteristics for vertical/fore-and-aft/pitch direction. In this paper, the dynamic characteristics of seated human body are represented as apparent inertia matrix. The apparent inertia matrix is obtained by the vertical/fore-and-aft/pitch excitation of seated human body. 6 resonance frequencies are observed in apparent inertia matrix. This result can be applied to develop the dynamic model for seated posture human body.

  • PDF

Dynamic Stability Analysis of Base-Isolated Low-level Nonlinear Structure Under Earthquake Excitation (지진시 저층건물 면진구조의 비선형 동적 거동)

  • Mun, Byeong-Yeong;Gang, Gyeong-Ju;Gang, Beom-Su;Kim, Gye-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1743-1750
    • /
    • 2001
  • This paper presents an analysis of nonlinear response of the seismically isolated structure against earthquake excitation to evaluate isolation performances of a rubber bearing. In the analysis of the vibration of building, the building is modeled by lumped mass system where the restoring force is considered as linear, bilinear and trilinear. Fundamental equations of motion are derived for the base isolated structure, and hysteretic and nonlinear-elastic characteristics are considered for a numerical calculation. The excitation levels are magnified fur the recorded strong earthquake motions in order to examine dynamic stability of the structure. Seismic responses (of the building are compared fur the each restoring force type. As a result, it is shown that the effect of the motion by the nonlinear response of the building is comparatively not so large from a seismic design standpoint. The responses of the isolated structures reduce sufficiently and controled the motion of the building well in a practical range. By increasing the acceleration of the earthquake, the yielding of the farce was occurred in the concrete and steel frame, which shows the necessity of the exact nonlinear dynamic analysis.

Confinement Effect Analysis Of Suction Pile In Ground Soil On The Basis Of Natural Frequency Measurement (고유진동수 기반 석션기초의 지반구속효과 분석)

  • Ryu, Moo Sung;Lee, Jun Shin;Lee, Jong Hwa;Seo, Yun Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • This paper presents the measuring process of dynamic properties of offshore wind power foundation and provides consideration of each step. This Guideline enables to maintain consistent measuring procedure and therefore increase the reliability of test results. Small scaled suction bucket foundation was fabricated to represent the commercial support structure installation mechanism and two cases(free-free, free-fixed) of dynamic tests were performed at workshop. From the tests, the importance of dynamic properties of connection part between suction bucket and tower was figured out. More over, types and configuration of measuring devices are recommended which can help find the natural frequency of wind turbine foundation correctly. In field test, it was found that the natural frequency of suction bucket foundation was increased linearly with the penetration depth due to the confining effect of ambient soil. Meanwhile, it was not easy to get an enough excitation force with normal impact hammer because the N.F of suction bucket model was in the lower range of 0 Hz ~ 5 Hz. Therefore, new excitation method which has enough force and can excite lower frequency range was devised. This study will help develop safety check procedure of suction bucket foundation in field at each installation stage using the N.F measurement.

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

Excitation and System Identification of a Full-Scale Five-Story Structure for the Application of Viscoelastic Dampers (점탄성 감쇠기 적용을 위한 실물크기 5층 건물의 가진 및 시스템 식별)

  • 민경원;이상현;김진구;이영철;이승준;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • Excitation and system identification are carried out for a full-scale five-story structure to obtain fundamental data which will be used for the design of viscoelastic dampers, The hybrid mass driver(HMD) installed on the fifth floor was employed as external exciter to provide excitation for the building, Each floor response was measured and processed to find out where and how the viscoelastic dampers are located and designed. The sine-sweep and white noise loadings were applied to the structure by the HMD to obtain dynamic characteristics such as natural frequencies, damping ratios, and modes, The identified building was experimentally investigated again with the designed viscoelastic dampers installed at inter-stories to obtain the response behavior in the companion paper.

Theoretical research on the identification method of bridge dynamic parameters using free decay response

  • Tan, Guo-Jin;Cheng, Yong-Chun;Liu, Han-Bing;Wang, Long-Lin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • Input excitation and output response of structure are needed in conventional modal analysis methods. However, input excitation is often difficult to be obtained in the dynamic load test of bridge structures. Therefore, what attracts engineers' attention is how to get dynamic parameters from the output response. In this paper, a structural experimental modal analysis method is introduced, which can be used to conveniently obtain dynamic parameters of the structure from the free decay response. With known damping coefficients, this analysis method can be used to identify the natural frequencies and the mode shapes of MDOF structures. Based on the modal analysis theory, the mathematical relationship of damping ratio and frequency is obtained. By using this mathematical relationship to improve the previous method, an improved experimental modal analysis method is proposed in this paper. This improved method can overcome the deficiencies of the previous method, which can not identify damping ratios and requires damping coefficients in advance. Additionally, this improved method can also identify the natural frequencies, mode shapes and damping ratios of the bridge only from the free decay response, and ensure the stability of identification process by using modern mathematical means. Finally, the feasibility and effectiveness of this method are demonstrated by a numerical example of a simply supported reinforced concrete beam.