• 제목/요약/키워드: dynamic excitation

검색결과 923건 처리시간 0.027초

약한 AC 계통에서 동기조상기용 여자 시스템 특성에 따른 HVDC 과도 특성 (Dynamic Performance of HVDC According to Excitation System Characteristics of Synchronous Compensator in a Weak AC System)

  • 김찬기;김정부;심응보
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권6호
    • /
    • pp.431-440
    • /
    • 2000
  • This paper analyses the dynamic performance of HVDC System connected to a weak AC system for various exciter characteristics of synchronous machines connected at the converter bus. Conventionally capacitors are used to supply reactive power requirement at a strong converter bus. But the installation of synchronous machine is essential in a isolated weak network to re-start after a shutdown of HVDC and to increase system strength. The dynamic performance of a synchronous machine depends on the characteristics depends of its exciter. In this paper, several exciter types are used to investigate their effect on the dynamic performance of the HVDC system and modifications to standard exciter topologies are suggested to mitigate observed problems.

  • PDF

자동차 공기스프링의 특성에 대한 실험적 고찰 (An Experimental Investigation on the Characteristics of An Automotive Air Spring)

  • 이재천;류하오
    • 유공압시스템학회논문집
    • /
    • 제8권2호
    • /
    • pp.17-22
    • /
    • 2011
  • The analysis of an air spring characteristics is necessary to design and control automotive air suspension system properly. A mathematical model of an air spring was derived in light of energy conservation first. Then static and dynamic experiments of the air spring have been fulfilled. The static stiffness with various initial pressures and effective areas were obtained from the static experimental results. Theoretical static stiffness obtained by using the mathematical model and effective area data is in close accordance with the experimental estimation. The dynamic experimental results show that the hysteresis in displacement-force cycle decreases when the frequency of the harmonic displacement excitation signal increases, but it does not change too much as the frequency is higher than 1Hz. And the dynamic stiffness goes up with increasing of the initial pressure and the excitation frequency.

매개변수 가진력을 받아 비행하는 구조물의 동적 모델링 및 안정성 해석 (Dynamic Modeling and Stability Analysis of a Flying Structure undertaking Parametric Excitation Forces)

  • 현상학;유홍희
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1157-1165
    • /
    • 1999
  • Dynamic stability of a flying structure undertaking constnat and pulsating thrust force is investigated in this paper. The equations of motion of the structure, which is idealized as a free-free beam, are derived by using the hybrid variable method and the assumed mode method. The structural system includes a directional control unit to obtain the directional stability. Unstable regions due to periodically pulsating thrust forces are obtained by using the Floquet's theory. Stability diagrams are presented to illustrate the influence of the constant force, the location of gimbal, and the frequency of pulsating force. The validity of the diagrams are confirmed by direct numerical simulations of the dynamic system.

  • PDF

4-레벨 컨버터 회로를 통한 SRM의 DITC 시스템의 성능향상 (Improvement of DITC SRM with a Novel 4-level Converter)

  • ;이진국;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.929-930
    • /
    • 2006
  • This paper presents a direct instantaneous torque control (DITC) of Switched Reluctance Moto (SRM) with a novel 4-level converter to obtain smooth torque and dynamic performance improvement. The DITC method can reduce the high inherent torque ripple of SRM drive system, but driving efficiency and dynamic performance are somewhat low due to the slow excitation current build-up. Since the 4-level converter can obtain a addition high voltage to get fast excitation current and demagnetization current, so, it can improve dynamic performance easily. As a high performance SRM drive system with low torque ripple and high dynamic performance can be implemented. The validity of proposed method is verified by some computer simulations and comparative experiments.

  • PDF

무인잠수정의 진수 인양에 따른 케이블시스템의 동적거동 평가 (Assessment of Dynamic Behavior of Cable System Due to Launching and Recovery of UUV)

  • 조규남;김민;송하철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.193-197
    • /
    • 2004
  • A finite element analysis is proposed to assess the dynamic response due to impulse excitation of UUV cable system. 'Onnuri'. a special purpose ship of KORDI. was adopted as a support vessel. and all the main dimensions and properties used in the analysis were determined by the support vessel. Transient dynamic response analysis was carried out for various types of impulses. and the magnitude of cable tension induced by impulse was discussed as results.

  • PDF

선내 탑재 마운팅 장비의 동특성에 관한 실험적 연구 (An Experimental Study on the Dynamic Characteristics of Onboard Machinery with Resilient Mounts)

  • 김극수;최수현
    • 대한조선학회논문집
    • /
    • 제40권2호
    • /
    • pp.28-33
    • /
    • 2003
  • This study is performed to evaluate and design the dynamic characteristics of the onboard machinery with resilient mounts. To avoid resonance with onboard machinery and external force, it is necessary to calculate natural frequencies of the resilient mounting system more accurately. Natural frequencies of on board machinery are determined by rigid body properties(mass, moment of inertia, center of mass) of machinery and stiffness of mounts. But it is very difficult to calculate rigid body properties theoretically. And stiffness properties of rubber mounts vary with dynamic displacement, pre load, frequency and temperature, and so on. In this study, we have identified rigid body properties using experimental modal analysis and estimated dynamic stiffness of rubber mount for onboard machinery using measured vibration response during seatrial. We measured displacement excitation through deck under mounts and evaluated relationship between modes of resilient mounting system and main excitation sources of a ship.

Dynamic responses of a riser under combined excitation of internal waves and background currents

  • Lou, Min;Yu, Chenglong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.685-699
    • /
    • 2014
  • In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-${\beta}$ method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui;Long-Ji Zhang;Zhi-Xiang Zhan
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.411-426
    • /
    • 2023
  • Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

정전기력 가진에 의한 외팔보형 탄소나노튜브 공진기의 비선형 동적 응답 (Nonlinear Dynamic Response of Cantilevered Carbon Nanotube Resonator by Electrostatic Excitation)

  • 김일광;이수일
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.813-819
    • /
    • 2011
  • This paper predicted nonlinear dynamic responses of a cantilevered carbon nanotube(CNT) resonator incorporating the electrostatic forces and van der Waals interactions between the CNT cantilever and ground plane. The structural model of CNT includes geometric and inertial nonlinearities to investigate various phenomena of nonlinear responses of the CNT due to the electrostatic excitation. In order to solve this problem, we used Galerkin's approximation and the numerical integration techniques. As a result, the CNT nano-resonator shows the softening effect through saddle-node bifurcation near primary resonance frequency with increasing the applied AC and DC voltages. Also we can predict nonlinear secondary resonances such as superharmonic and subharmonic resonances. The superharmonic resonance of the nano-resonator is influenced by applied AC voltage. The period-doubling bifurcation leads to the subharmonic resonance which occurs when the nano-resonator is actuated by electrostatic forces as parametric excitation.

불규칙적으로 가진되는 동흡진기계의 비선형응답현상 (Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제3권2호
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF