• Title/Summary/Keyword: dynamic equations

Search Result 2,267, Processing Time 0.027 seconds

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

A Study on the Analysis of Stochastic Nonlinear Dynamic System (확률적 비선형 동적계의 해석에 관한 연구)

  • 남성현;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.697-704
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents the stochastic model of a nonlinear dynamic system with uncertain parameters under nonstationary stochastic inputs. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method and the second moment equation is numerically evaluated by stochastic process closure method, 4th cumulant neglect closure method and Runge-Kutta method. But the first and the second moment equations are coupled each other, so this equations are approximately evaluated by a iterative method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

Dynamic Characteristics of Journal Bearings Considering Bearing Span (베어링 Span을 고려한 저널 베어링의 동특성 해석)

  • 윤진욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.906-910
    • /
    • 2003
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearings considering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

  • PDF

Dynamic Stability Analysis of Clamped-Hinged Columns with Constant Volume (일정체적 고정-회전 기둥의 동적안정 해석)

  • Kim, Suk-Ki;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1074-1081
    • /
    • 2006
  • This paper deals with the dynamic stability analysis of clamped-hinged columns with constant volume. Numerical methods are developed for solving natural frequencies and buckling loads of such columns, subjected to an axial compressive load. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are always held constant. Differential equations governing both free vibrations and buckled shapes of such columns are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. The numerical methods developed herein for computing natural frequencies and buckling loads are found to be efficient and robust. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are reported in figures and tables.

Dynamic Characteristics of Journal Bearings Considering Bearing Span (베어링 Span을 고려한 저널 베어링의 동특성 해석)

  • Yoon, Jinwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.779-784
    • /
    • 2004
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearingsconsidering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

Dynamic response of elasto-plastic planar arches

  • Lee, S.L.;Swaddiwudhipong, S.;Alwis, W.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.9-23
    • /
    • 1996
  • The behaviour of elasto-plastic planar arches subjected to dynamic loads in presented. The governing equations are formulated through the dynamic equations and compatibility conditions. The latter is established by applying the generalized conjugate segment analogy. Bending moments at the nodes and axial forces in the members are considered as primary variables in the elastic regime. They are supplemented by the rotations at the nodes and dislocations in the elements when plastic hinges occur. Newmark-${\beta}$ method is adopted in the time marching process. The interaction diagram of each element is treated as the yield surface for the element and the associated flow rule is enforced as plastic flow occurs. The method provides good prediction of dynamic response of elasto-plastic arches while requiring small core storage and short computer time.

A Study on the Analysis of Stochastic Dynamic System (확률적 동적계의 해석에 관한 연구)

  • Nam, S.H.;Kim, H.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents a generalized stochastic model of dynamic system subjected to bot external and parametric nonstationary stochastic input. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method. But the second moment equation is founded to constitute an infinite coupled set of differential equations, so this equations are numerically evaluated by cumulant neglect closure method and Runge-Kutta method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

  • PDF

Modeling of truncated nanocompositeconical shell structures for dynamic stability response

  • S.M.R. Allahyari;M. Shokravi;T.T. Murmy
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.325-334
    • /
    • 2024
  • This paper deals with the dynamic buckling behavior of truncated conical shells composed of carbon nanotube composites, an important area of study in view of their very wide engineering applications in aerospace industries. In this regard, the effective material properties of the nanocomposite have been computed using the Mori-Tanaka model, which has already been established for such analyses. The motion equations ruling the structure's behavior are derived using first order shear deformation theory, Hamilton's principle, and energy method. This will provide adequate background information on its dynamic response. In an effort to probe the dynamic instability region of the structure, differential quadrature method combined with Bolotin's method will be adopted to tackle the resulting motion equations, which enables efficient and accurate analysis. This work considers the effect of various parameters in the geometrical parameters and the volume fraction of CNTs on the structure's DIR. Specifically, it became clear that increasing the volume fraction of CNTs shifted the frequency range of the DIR to higher values, indicating the significant role of nanocomposite composition regarding structure stability.

Inclusive Growth and Innovation: A Dynamic Simultaneous Equations Model on a Panel of Countries

  • Bresson, Georges;Etienne, Jean-Michel;Mohnen, Pierre
    • STI Policy Review
    • /
    • v.6 no.1
    • /
    • pp.1-23
    • /
    • 2015
  • Based on the work of Anand et al. (2013) we measure inclusive income growth, which combines growth in gross domestic product (GDP) per capita and growth in the equity of the income distribution. Extending the work of Causa et al. (2014), we estimate a dynamic simultaneous structural equations model of GDP per capita and inclusive income on panel data for 63 countries over the 1990-2013 period. We estimate both equations in error correction form by difference GMM (generalized method of moments). Among the explanatory variables of the level and the distribution of GDP per capita we include R&D (research and development) expenditure per capita. In OECD countries we obtain a large positive effect of R&D on GDP. R&D is found to have a positive effect on the social mobility index but its impact on the income equity index at first decreases, then switches around to become slightly positive in the long run. In non- OECD countries, R&D is found to decrease inclusive income, mostly through a negative growth effect but also because of a slightly increasing income inequity effect.

Some Modifications of MacCormark's Methods (MacCormack 방법의 개량에 대한 연구)

  • Ha, Young-Soo;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 2005
  • MacCormack's method is an explicit, second order finite difference scheme that is widely used in the solution of hyperbolic partial differential equations. Apparently, however, it has shown entropy violations under small discontinuity. This non-physical shock grows fast and eventually all the meaningful information of the solution disappears. Some modifications of MacCormack's methods follow ideas of central schemes with an advantage of second order accuracy for space and conserve the high order accuracy for time step also. Numerical results are shown to perform well for the one-dimensional Burgers' equation and Euler equations gas dynamic.

  • PDF