• Title/Summary/Keyword: dynamic elasticity

검색결과 423건 처리시간 0.023초

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P.;Jadhao, Pradip D.
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.123-132
    • /
    • 2022
  • This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

인공신경망 기반 동결융해 작용을 받는 콘크리트의 내구성능 평가 (Estimation of Concrete Durability Subjected to Freeze-Thaw Based on Artificial Neural Network)

  • 할리오나;허인욱;최승호;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.144-151
    • /
    • 2023
  • 이 연구에서는 동결융해 작용을 받는 다양한 콘크리트 배합에 대한 실험결과를 수집하여 데이터베이스를 구축하였다. 이를 바탕으로 동결융해 작용을 받는 콘크리트의 인공지능 기반 내구성능 평가모델을 개발하였으며, 회귀분석을 통해 상대동탄성계수 추정식을 도출하였다. 제안된 인공신경망 모델의 오류율과 결정계수는 각각 약 10.4%와 0.7이었으며, 회귀분석 추정식도 유사한 결과를 나타내었다. 따라서, 제안된 인공신경망 모델 및 회귀분석 추정식은 다양한 배합의 동결융해 작용을 받는 콘크리트에 대한 상대동탄성계수를 추정하는 데에 활용될 수 있을 것으로 판단된다.

거주자 사용성 확보를 위한 콘크리트 맨바닥 시공 품질 관리 기법 (Quality Control Techniques for Bare Concrete Floor Construction to Ensure Serviceability for Occupants)

  • 목지욱;최경석;김정진;석원균
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.19-20
    • /
    • 2023
  • The pre-qualification system related to floor impact noise is considered ineffective, and thus, the introduction of a post-verification system is being prepared. This is because the performance, which was notarized in the qualification test due to various reasons, was not uniformly confirmed on building construction fields. Industry practitioners perceive that this is due to the influence of factors such as the flatness, levelness and/or thickness of the floor. However, it is very difficult to confirm such facts in a short period of time on the fields, and since the practical application of technology to measure and evaluate quantitatively and the establishment of a system are insufficient, it cannot be said to be a problem that can be brought to the surface. In fact, even when considering the conventional measurement of the dynamic modulus of elasticity, measurements are performed under controlled variables, such as placing a 200mm×200mm buffer material on a flat test-floor. However, in the fields, it is common to lay down larger productions(for example, 900mm×600mm) on the bare floor where significant variables are not controlled, and to construct finishing layers corresponding to the pre-qualified floor system without separately confirming the realization of the dynamic modulus of elasticity in the field conditions. In this study, spatial information of the bare floor on the field was measured and evaluated through a laser scanner. Technical methods for assessing the smoothness, flatness, and thickness of construction surfaces were reviewed, providing key insights for grading the quality of construction based on these criteria. Through further detailed and thorough investigations, it is expected that results suitable for practical application and systematization will be derived.

  • PDF

유연벽면 점탄성 소재의 광대역 동특성 계측 기법 (Measurement Method of Broadband Dynamic Characteristics of Viscoelastic Material for Compliant Coating)

  • 바셀 서우디;안드레이 보이코;전호환;이인원
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.73-80
    • /
    • 2008
  • An improved method to measure the dynamic viscoelastic properties of elastomers is proposed. The method is based on the analysis of forced oscillation of a cylindrical sample loaded with inertial mass. No special equipment or instrumentation other than the ordinary vibration measurement apparatus is required. Typical measurement of the viscoelastic properties of a silicone rubber $Silastic^{(R)}$ S2 were measured over the wide frequency range from 10 Hz to 3 kHz under the action of wide region of deformation from $10^{-4}%$ to 5%. It was shown that modulus of elasticity and loss tangent fall on the single curves when the ratio of load mass to sample mass changed from 1 to 20.

Non-stationary mixed problem of elasticity for a semi-strip

  • Reut, Viktor;Vaysfeld, Natalya;Zhuravlova, Zinaida
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.77-89
    • /
    • 2020
  • This study is dedicated to the dynamic elasticity problem for a semi-strip. The semi-strip is loaded by the dynamic load at the center of its short edge. The conditions of fixing are given on the lateral sides of the semi-strip. The initial problem is reduced to one-dimensional problem with the help of Laplace's and Fourier's integral transforms. The one-dimensional boundary problem is formulated as the vector boundary problem in the transform's domain. Its solution is constructed as the superposition of the general solution for the homogeneous vector equation and the partial solution for the inhomogeneous vector equation. The matrix differential calculation is used for the deriving of the general solution. The partial solution is constructed with the help of Green's matrix-function, which is searched as the bilinear expansion. The case of steady-state oscillations is considered. The problem is reduced to the solving of the singular integral equation. The orthogonalization method is applied for the calculations. The stress state of the semi-strip is investigated for the different values of the frequency.

Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method

  • Isa Ahmadi;Mohammad Naeim Moradi;Mahdi Davar Panah
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.135-153
    • /
    • 2024
  • In this study, the impact response of a nanobeam with a moving nanoparticle is investigated. Timoshenko beam theory is used to model the nanobeam behavior and nonlocal elasticity theory is used to consider the effects of small dimensions. The interaction between the nanoparticle and nanobeam has been described using Lennard-Jones potential theory and the equations are discretized by the radial basis meshless method and a mathematical model is presented for the nanobeam-nanoparticle system. Validation of the proposed model is achieved by comparing the obtained natural frequencies with reference values, demonstrating good agreement. Dimensionless frequency analysis reveals a decrease with increasing nonlocal parameter, pointing out a toughening effect in nanobeam. The dynamic response of the nanobeam and nanoparticle is obtained by time integration of equations of motion using Newmark and Wilson-𝜃 methods. A comparative analysis of the two methods is conducted to determine the most suitable approach for this study. As a distinctive aspect in this study, the analysis incorporates the deformation of the nanobeam resulting from the nanoparticle-nanobeam interaction when calculating the Lennard-Jones force in the nanobeam-nanoparticle system. The numerical findings explore the impact of various factors, including the nonlocal parameter, initial velocity, nanoparticle mass, and boundary conditions.

비국소 탄성 이론을 이용한 나노-스케일 판의 강제진동응답 (Dynamic response of nano-scale plates based on nonlocal elasticity theory)

  • 김진규;한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.436-444
    • /
    • 2013
  • 미세 규모 효과를 고려한 비국소 연속체 이론을 이용한 고차전단변형 나노-스케일 판의 동적응답에 대하여 연구하였다. Eringen의 비국소 연속체 이론은 미소 규모 효과를 고려할 수 있고 고차전단변형이론은 나노 판의 두께방향으로의 전단변형률과 전단응력의 곡선변화 효과를 고려할 수 있다. 비국소 탄성 이론과 고차전단변형이론이 나노-스케일 판의 동적응답에 미치는 비국소 이론의 효과를 제시하였다. 국소 탄성이론과의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 비국소 계수 변화, 형상비, 폭-두께비, 나노-스케일 판의 크기 그리고 하중재하 시간간격 등이 나노-스케일 판의 동적응답 미치는 효과에 대하여 관찰하고 분석하였다. 비국소 변수의 증가는 나노-스케일 판의 주기와 진폭을 증가시켰다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였다. 본 연구에서 제시한 이론적 발전과 수치결과들은 나노-스케일 구조물의 동적해석에 적용하는 비국소 이론들을 위한 참고자료로 활용될 수 있을 것이다.

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.

A study of an oyster monthly forecasting model using the structural equation model approach based on a panel analysis

  • Sukho Han;Seonghwan Song;Sujin Heo;Namsu Lee
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.949-961
    • /
    • 2022
  • The purpose of this study is to build an oyster outlook model. In particular, by limiting oyster items, it was designed as a partial equilibrium model based on a panel analysis of a fixed effect model on aquaculture facilities. The model was built with a dynamic ecological equation (DEEM) system that considers aquaculture and harvesting processes. As a result of the estimation of the initial aquaculture facilities based on the panel analysis, the elasticity of the remaining facility volume in the previous month was estimated to be 0.63. According to Nerlove's model, the adjustment coefficient was interpreted as 0.31 and the adjustment speed was analyzed to be very slow. Also, the relative income coefficient was estimated to be 2.41. In terms of elasticity, it was estimated as 0.08% in Gyeongnam, 0.32% in Jeonnam, and 1.98% in other regions. It was analyzed that the elasticity of relative income was accordingly higher in non-main production area. In case of the estimation of the monthly harvest facility volume, the elasticity of the remaining facility volume in the previous month was estimated as 0.53, and the elasticity of the farm-gate price was estimated as 0.23. Both fresh and chilled and frozen oysters' exports were estimated to be sensitive to fluctuations in domestic prices and exchange rates, while Japanese wholesale prices were estimated to be relatively low in sensitivity, especially to the exchange rate with Japan. In estimating the farm-gate price, the price elasticity coefficient of monthly production was estimated to be inelastic at 0.25.

반복 전단.인장 변형에 따른 데님 직물의 피로도에 관한 연구 (Fatigue Phenomenon of Mechanical Properties in Denim Fabrics for Slacks during Repeated Shear and Tensile Deformation)

  • 이창미;권오경;박희웅
    • 한국의류학회지
    • /
    • 제20권6호
    • /
    • pp.975-982
    • /
    • 1996
  • This study was conducted to examine the fatigue phenomenon of mechanical properites in denim fabrics for slacks during repeated shear and tensile deformation by analysing the change in the basic dynamic properties of fabrics on the basic of experiments to obtain the basic data necessary to measure their fatigue. In addition, this study was carried out by allowing these denim fabrics at market to go through the repeated deformation under such different loads as 500 gf/cm2 and 1000 gf/cm2 by using a simulated fatigue tester, by calculating both dynamic properties and hand value (HV) of these fabrics with KES-F system and then by obtaining the THV through these calculated properties. The results are as follows: 1 The fatigue phenomenon of dynamic properties was remarkably shown by the repeated shear and tensile deformation, while the increase of hysterical plastic substances was also remarkable in these shearing and bending properties. 2. The elasticity values of tensile, bending and compression properties, such as, B and G were reduced: whereas RT and RC values increased. It was shown, then, that those fabrics lost their elasticity and became flexible and soft with the increase of fatigue. 3. The fatigue phenomenon of hand value also showed that those fabrics became soft in relation with the change of all dynamic properties, and that their performance was also change to flexible hand value. 4. TRhe degree of fatigue was also shown by the loads given to the repeated deformation. It was shown that the fatigue was higher for the tensile load of 1000 gf/cm3 than did the standard load of 500 gf/cm3 It is necessary, therefore, to consider the load in accordance with their usage when examining the fatigue phenomenon with respect to the dynamic properties of clothing materials. 5. The loads were nearly not influenced by the change in the general hand value tended to show a little of increase with the increase of fatigue, Based on those results, it seems that the fatigue phenomonon is related to the loads given to the repeated deformation.

  • PDF