• Title/Summary/Keyword: dynamic differential scanning calorimetry

Search Result 72, Processing Time 0.028 seconds

High Temperature Deformation Behavior and Estimation for Formability of Zr55Cu30Al10Ni5 Bulk Metallic Glass (Zr계 비정질 합금의 고온 변형거동과 성형성 예측)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.309-312
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$(at. %) bulk metallic glass(BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure with the analysis of X-ray diffraction(XRD) and differential scanning calorimetry(DSC) data. A series of compression tests has consequently been performed in the region of supercooled liquid temperature to investigate the behavior of high temperature deformation. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

Characterization of the mechanical behavior of PEKK polymer and C/PEKK composite materials for aeronautical applications below and above the glass transition temperature

  • Pedoto, Giuseppe;Smerdova, Olga;Grandidier, Jean-Claude;Gigliotti, Marco;Vinet, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.475-493
    • /
    • 2020
  • This paper is focused on the characterization of the thermomechanical properties of semicrystalline poly-ether-ether-ketone (PEKK) and of carbon fiberreinforced thermoplastic based laminated composites (C/PEKK) below and above the glass transition temperature (Tg). Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and tensile tests are carried out on both pure PEKK polymer and [(±45)2, +45]s C/PEKK composite samples, showing a significant similarity in behavior. The employment of a simple micromechanical model confirms that the mechanical and physical behavior of the polymer and that of the matrix in the composite are similar.

Studies on Cure Behaviors, Dielectric Characteristics and Mechanical Properties of DGEBA/Poly(ethylene terephthalate) Blends

  • Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.585-590
    • /
    • 2009
  • The cure behaviors, dielectric characteristics and fracture toughness of diglycidylether of bisphenol-A (DGEBA)/poly(ethylene terephthalate) (PET) blend system were investigated. The degree of conversion for the DGEBA/PET blend system was measured using Fourier transform infrared (FTIR) spectroscopy. The cure kinetics were investigated by measuring the cure activation energies ($E_a$) with dynamic differential scanning calorimetry (DSC). The dielectric characteristic was examined by dielectric analysis (DEA). The mechanical properties were investigated by measuring the critical stress intensity factor ($K_{IC}$), critical strain energy release rate ($G_{IC}$), and impact strength test. As a result, DGEBAIPET was successfully blended. The Ea of the blend system was increased with increasing PET content to a maximum at 10 phr PET. The dielectric constant was decreased with increasing PET content. The mechanical properties of the blend system were also superior to those of the neat DGEBA. These results were attributed to the increased cross-linking density of the blend system, resulting from the interaction between the epoxy group of DGEBA and the carboxyl group of PET.

Thermal Characteristics and Friction and Wear Characteristics of Phenolic Resin and Friction Material with the Content of Acrylonitrilebutadienerubber (Acrylonitrilebutadienerubber의 함량에 따른 페놀수지 및 마찰재의 열특성 및 마찰 .마모 특성)

  • Kim, Chang-Jea;Jang, Ho;Yoon, Ho-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.114-114
    • /
    • 2001
  • The thermal and friction characteristics of phenolic resin and model friction materials were investigated with the content of acrylonitrilebutadienerubber(NBR). The thermal characteristics of material was performed by dynamic mechanical thermal analysis and differential scanning calorimetry. The friction and wear characteristics of the material were determined by using friction material testing machine. The results show that with the more content of rubber, the loss modulus of friction material was increased. The friction coefficient and the specific wear rate with various NBR contents were reported.

  • PDF

Characterization of Healing Agent Candidates for Self-healing Applications (자가손상복구용 복구액의 특성 분석)

  • Liu, Xing;Lee, Jong-Keun;Kim, Jung-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1668-1673
    • /
    • 2008
  • 고분자 복합재 구조물의 경우 일반적으로 여러 층의 단층(laminar)이 적층된 구조로 이루어져 있으며, 모재균열, 층간분리 및 섬유파단과 같은 손상이 발생되어 파단에 이르게 된다. 자가손상 복구기법은 복합소재의 열경화성 수지 내에 손상복구액을 포함하고 있는 마이크로캡슐과 촉매를 투입하여 외부의 도움 없이 손상을 치료할 수 있는 방법으로, 소재의 디자인에 있어서 새로운 페러다임을 제공할 수 있는 것으로 현재 많은 연구가 진행되고 있다. 본 연구에서는 ENB(5-ethylidene-2-norbornene)와 DCPD(dicyclopentadiene)에 대하여 DMA(dynamic mechanical analysis)와 DSC(differential scanning calorimetry)를 이용하여 특성을 분석하였다. 또한 그들의 ROMP(ring-opening metathesis polymerization)반응과의 관계를 조사하였으며, ENB와 DCPD 블렌드에 대한 복구액으로서의 특성도 조사하였다. 본 연구실에서 합성된 두 가지 다른 종류의 ROMP 경화제에 대한 실제 자가손상복구에으로서의 적용상 특성도 연구하였다.

  • PDF

Cure simulation in LED silicone lense using dynamic reaction kinetics method (승온 반응속도식을 이용한 LED용 실리콘 렌즈의 경화공정해석)

  • Song, Min-Jae;Hong, Seok-Kwan;Park, Jeong-Yeon;Lee, Jeong-Won;Kim, Heung-Kyu
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.46-49
    • /
    • 2014
  • Silicone is recently used for LED chip lense due to its good thermal stability and optical transmittance. In order to predict residual stress which causes optical briefringence and mechanical warpage of silicone, finite element analysis was conducted for curing process during silicone molding. For analysis of curing process, a dynamic cure kinetics model was derived based on the differential scanning calorimetry(DSC) test and applied to the material properties for finite element analysis. Finite element simulation result showed that the slow cure reduced abrupt reaction heat and it was predicted decrease of the residual stress.

  • PDF

Synthesis and Properties of Bio-Thermoplastic Polyurethanes with Different Isocyanate Contents

  • Li, Xiang Xu;Sohn, Mi Hyun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.225-231
    • /
    • 2019
  • Bio-based polyester polyol was synthesized via esterification between azelaic acid and isosorbide. After esterification, bio-based polyurethanes were synthesized using polyester polyol, 1,3-propanediol as the chain extender, and 4,4'-diphenylmethane diisocyanate, in mixing ratios of 1:1:1.5, 1:1:1.8, 1:1:2, and 1:1:2.3. The bio TPU (Thermoplastic Polyurethane) samples were characterized by using FT-IR (Fourier Transform Infrared Spectroscopy), TGA (Thermal Gravimetric Analysis), DSC (Differential Scanning Calorimetry), and GPC (Gel Permeation Chromatography). The mechanical properties (tensile stress and hardness) were obtained by using UTM, a Shore A tester, and a Taber abrasion tester. The viscoelastic properties were tested by an Rubber Processing Analyzer in dynamic strain sweep and dynamic frequency test modes. The chemical resistance was tested with methanol by using the swelling test method. Based on these results, the bio TPU synthesized with the ratio of 1:1:2.3, referred to as TPU 4, showed the highest thermal decomposition temperature, the largest molecular weight, and most compact matrix structure due to the highest ratio of the hard segment in the molecular structure. It also presented the highest tensile strength, the largest elongation, and the best viscoelastic properties among the different bio TPUs synthesized herein.

Enhancement of Wetting Characteristics for Anisotropic Conductive Adhesive with Low Melting Point Solder via Carboxylic Acid-based Novel Reductants (카르복실산계 환원제를 통한 저융점 솔더입자가 포함된 이방성 전도성 접착제의 젖음 특성 향상 연구)

  • Kim, Hyo-Mi;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • The low viscous epoxy resin(bisphenol F) with carboxylic acid as the reductants was introduced for high performance and reliability in the ACA with a low melting point alloy filler system. The curing characteristics of the epoxy resin and temperature dependant viscosity characteristic of epoxy resin at the melting temperature of LMPA were investigated by dynamic mode of differential scanning calorimetry (DSC) and rheometer, respectively. Based on these thermo-rheological characteristics of epoxy resin and LMPA, the optimum process system was designed. In order to remove the oxide layer on the surface of LMPA particle, three different types of carboxyl acid-based reductant were added to the epoxy resin. The wetting angles were about $18^{\circ}$ for carboxypropyldisilioxane, and $20.3^{\circ}$ for the carboxy-2-methylethylsiloxane, respectively.

Curing of Epoxy Resin with Natural Cashew Nut Shell Liquids (천연 캐슈너트 외피유를 이용한 에폭시 수지의 가교)

  • Nah, Chang-Woon;Go, Jin-Hwan;Byun, Joon-Hyung;Hwang, Byung-Sun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The cure behavior of epoxy resin with a conventional amide-type hardener(HD) was investigated in the presence of castor oil(CO), cashew nut shell liquid(CNSL) and CNSL-formaldehyde resin(CFR) by using a dynamic differential scanning calorimetry(DSC). The activation energy of curing reaction was also calculated based on the non-isothermal DSC thermograms at various heating rates. An one-stage curing was noted in the case of epoxy resin filled with CO, while the epoxy resin with CNSL and CFR showed a two-stage curing process. A competitive cure reaction was noted for the epoxy resin/CNSL(or CFR)/HD blends. In the absence of HD, the CFR showed lower values of curing enthalpy than that of CNSL. The activation energy of epoxy resin curing increased with increasing the CNSL and CFR loading.

Poly(1,2-propylene glycol adipate) as an Environmentally Friendly Plasticizer for Poly(vinyl chloride) (폴리염화비닐의 친환경 가소제로서 Poly(1,2-propylene glycol adipate))

  • Zhao, Yan;Liang, Hongyu;Wu, Dandan;Bian, Junjia;Hao, Yanping;Zhang, Guibao;Liu, Sanrong;Zhang, Huiliang;Dong, Lisong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.247-255
    • /
    • 2015
  • Poly(1,2-propylene glycol adipate) (PPA) was used as an environmentally friendly plasticizer in flexible poly(vinyl chloride) (PVC). Thermal, mechanical, and rheological properties of the PVC/PPA blends were characterized by differential scanning calorimetry, dynamic mechanical analysis, tensile test, scanning electron microscopy and small amplitude oscillatory shear rheometry. The results showed that PPA lowered the glass transition temperature of PVC. The introduction of PPA could decrease tensile strength and Young's modulus of the PVC/PPA blends; however, elongation-at-break was dramatically increased due to the plastic deformation. The plasticization effect of PPA was also manifested by the decrease of dynamic storage modulus and viscosity in the melt state of the blends. The results indicated that PPA had a good plasticizing effect on PVC.