• Title/Summary/Keyword: dynamic deformation

Search Result 1,478, Processing Time 0.025 seconds

Dynamic stiffness formulations for harmonic response of infilled frames

  • Bozyigit, Baran;Yesilcea, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.183-191
    • /
    • 2018
  • In this paper, harmonic responses of infilled multi-storey frames are obtained by using a single variable shear deformation theory (SVSDT) and dynamic stiffness formulations. Two different planar frame models are used which are fully infilled and soft storey. The infill walls are modeled by using equivalent diagonal strut approach. Firstly, free vibration analyses of bare frame and infilled frames are performed. The calculated natural frequencies are tabulated with finite element solution results. Then, harmonic response curves (HRCs) of frame models are plotted for different infill wall thickness values. All of the results are presented comparatively with Timoshenko beam theory results to reveal the effectiveness of SVSDT which considers the parabolic shear stress distribution along the frame member cross-sections.

The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation (스테인레스 304의 열간동적재결정과 미세조직 예측)

  • Kwon Y. P.;Cho J. R.;Lee S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.25-28
    • /
    • 2000
  • The flow stress of 304 stainless steel during high during hot forming process were determined by conducting hot compression tests at the range of 1273 K-1423 K and 0.05 /s-2.0 /s as these are typical temperature and strain rate in hot forging operation. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. Dynamic recrystallization was found to be the major softening mechanism with this conditions as previous studies. A finite element analysis was performed to predict the recrystallized volume fraction and the mean grain size in hot compression of 304 stainless steel.

  • PDF

Study about dynamic/static recrystallization during hot compression of Cast alloy 718 (Cast alloy 718의 고온압축시 동적/정적재결정에 대한 연구)

  • Kim, Nam-Yong;Kim, Jeoung-Han;Yeom, Jong-Taek;Park, Nho-Kwang;Yoon, Jong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.207-210
    • /
    • 2006
  • Behavior of dynamic/static recrystallization during hot deformation of Cast alloy 718 was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmaster-Z and DEFORM-3D, respectively. The microstructural evolution during hot compression and post heat-treatment was investigated and deformation mechanism were analyzed by stress-strain curve, FE-simulation and microstructure. FE-simulation results show that the temperature difference between top-die and billet has considerable influence on the final shape of compressed specimen. The relation between applied load and processing time was predicted by the FE-simulation.

  • PDF

Vibration Analysis of a Flexible Structure in a Motion (유연 구조물의 운동중 발생하는 진동의 해석)

  • 이신영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1503-1509
    • /
    • 1994
  • An analysis method is suggested and experimentally studied in order to solve a vibration problem of a flexible structure while it is moving. In this method, substructure synthesis method, modal analysis method and Newmark's integral method were used. Total deformation of a structure was composed of quasistatic component and dynamic component. Rigid body modes were considered in calculation of dynamic component. Combining those two component, deformation behavior and a real structural model of a transfer feeder showed good agreements with computational results.

Dynamic Compressive Deformation Characteristics of Free-Cutting Brass And Yellow Brass at High Strain Rates (고변형률 압축 하중에서 쾌삭 황동과 황동의 동적 변형 거동 특성)

  • Lee, Ouk-Sub;Kim, Kyoung-Joon;Lee, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.107-112
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically loaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.

  • PDF

Dynamic Free-Surface Deformations in Axisymmetric Thermocapillary Convection in Open Cylindrical Annuli (동적인 자유표면을 가진 동심원통에서의 열모세관 대류)

  • Sim, Bok-Cheol;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1560-1565
    • /
    • 2003
  • Thermocapillary convection in an open cylindrical annulus heated from the inside wall is investigated by two-dimensional numerical simulations. The deformable free surface is obtained as a solution of the coupled transport equations at fixed Prandtl and aspect ratio. Only steady convection can be realized in this axisymmetric computations with either non-deformable or deformable surfaces. Dynamic free-surface deformations do not induce transitions to oscillatory convection even at large Reynolds numbers. Free surfaces are convex near the cold wall due to the stagnation point, and concave near the hot wall. Free surface deformation increases with increasing Ca at a fixed Re. Two peaks appear at the free surface with low Re, while additional ripples, four peaks, occur at larger Re. Thermocapillary convection in the open annulus interior is insensitive to variations in Ca.

  • PDF

A Study on the Dynamic Stability of a Flexible Missile with Mass Variation (질량변화를 갖는 유연한 미사일의 동적 안정성에 관한 연구)

  • Ryu, Bong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.107-117
    • /
    • 1991
  • The dynamic stability problem of nonconservative system is one of the important problems. In this study, flexible missile with mass variation is regarded as a free Timoshenko beam subjected to a controlled follower force. The stability was studied numerically through the finite element method. Through the study, the obtained results are as follows: [1] Without force direction control (1) In the case of no mass reduction, the existence of concentrated mass increases critical follower force. (2) Mass reduction rate of the beam slightly effects on the change of critical follower force. [2] With force direction control (1) Shear deformation parameter S contributes insignificantly to the force at instability when $S{\geq}10^4$. (2) With mass variation, increase of concentrated mass increases critical follower force at instbility. (3) The type of promary instability is determined by the sensor location.

  • PDF

Measurements o Elastic Moduli of Rock Cores Using Free-Free Resonacne Tests (자유단 공진시험을 이용한 암석의 탄성계수 측정)

  • 목영진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.95-100
    • /
    • 1999
  • Dynamic measurements are used rather sparingly to determine the elastic modull of rock cores and modulus values are not much utilized in design practice. The reason seems to result from the general perception that values obtained by dynamic measurement are much higher (about 10 times) than those determined statically. This paper presents results from dynamic and static tests on rock cores. The findings are: 1) elastic modull can be consistently determined by laboratory seismic testing. 2) nonlinear deformation characteristics of rock cores was tentatively proposed with variation in elastic modulus with strain.

  • PDF

Dynamic Analysis of a Cantilever Beam with the Parametric Exitation in Rotation (회전 방향으로 매개 가진하는 외팔보의 동적 해석)

  • 임형빈;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.335-340
    • /
    • 2001
  • Dynamic stability of a rotary oscillating cantilever beam is presented in this study. Using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle and transformed into dimensionless forms. Stability diagrams of the first order approximate solutions are obtained by using the multiple scale perturbation method. The stability diagrams show that relatively large unstable regions exist near the combination of the first chordwise bending natural frequency and the first stretch natural frequency. This result is verified by using the generalized-${\alpha}$ method.

  • PDF

Dynamic Compressive Deformation Characteristics of Brass at High Strain Rates (고변형률 압축 하중에서 활동(KS D 5101 C3605BD-F)의 동적 변형 거동 특성)

  • 이억섭;나경찬;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.142-147
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically leaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate ]ending conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.