• Title/Summary/Keyword: dynamic behavior characteristics

Search Result 1,217, Processing Time 0.027 seconds

Review on the Dynamic Behavior of G7 High Speed Train(KHST) in the KTX Test Line (경부고속철도 시험선 구간에서 G7 고속전철 차량의 동특성 검토)

  • 박찬경;김영국;배대성;박태원
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.131-137
    • /
    • 2001
  • The dynamic behavior of high speed train is very important because of its safety and passengers' ride comfort. The railway vehicle is composed of many suspension components, such as 1st springs, 1st dampers, 2nd springs and 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes and the track geometry affect the dynamic behavior of high speed train. This paper reviews the dynamic behavior of KHST in the KTX test line. The VAMPIRE program is used for this simulation. The simulation results are within the limits of safety criteria. Thus the KHST can operate safely at 350 km/h in the KTX test line.

  • PDF

Analysis of Dynamic Behavior of the High Speed Train by External Force due to the Gust (동적거동 관점에서의 돌풍에 대한 고속전철 운행속도 영향 연구)

  • Park, C.K.;Kim, Y.G.;Choe, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.495-500
    • /
    • 2001
  • The dynamic behavior of high speed train is very important because it should be safe and is satisfied with the ride comfort of passengers. The railway is composed of many suspension components-1st springs, 1st dampers, 2nd springs, 2nd dampers etc- that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes, the track condition and geometry and many environmental factors-rain, snow, wind etc-are affected the dynamic behavior of high speed train. This paper is reviewed the effect of wind(gust) on the dynamic behavior of high speed train. Vampire program is used for this simulation. The result of simulation shows that high speed train should not be operated when the gust speed is beyond 34.5m/sec.

  • PDF

Analysis of the Dynamic Behavior and Characteristics of the CNG Compressor Considering Bearing Characteristics (베어링 특성을 고려한 CNG 압축기의 동적 거동 및 동특성 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.342-349
    • /
    • 2006
  • In this study, a dynamic behavior of rotor-bearing system used in CNG compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for roller bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at eccentric crank-pin part. And, the steady state displacements of the rotor are compared with a variation in stiffness coefficient of roller bearings. Results show that the loci of crankshaft considering unbalance forces and external compression forces are more severe in whirl motion than with only unbalance forces.

An Investigation of Dynamic Characteristics of Structures Subjected to Dynamic Load from the Viewpoint of Design (동하중을 받는 구조물의 동적특성에 관한 설계 관점에서의 고찰)

  • Lee Hyun-Ah;Kim Yong-Il;Kang Byung-Soo;Kim Joo-Sung;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1194-1201
    • /
    • 2006
  • All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads.

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types (접촉면 처리 방식에 따른 석탑의 내진 특성 평가)

  • Kim, Ho-Soo;Kim, Dong-Kwan;Won, Tae-Ho;Jeon, Geon-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.41-50
    • /
    • 2019
  • The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.

Verification of the Theoretical Model for Analyzing Dynamic Behavior of the PIG from Actual Pigging

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Park, Yong-Woo;Yoo, Hui-Ryong;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1349-1357
    • /
    • 2003
  • This paper deals with verification of the theoretical model for dynamic behavior of Pipeline Inspection Gauge (PIG) traveling through high pressure natural gas pipeline. The dynamic behavior of the PIG depends on the differential pressure across its body. This differential pressure is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze the dynamic behavior characteristics such as gas flow in pipeline, and the PIG position and velocity, not only the mathematical models are derived, but also the theoretical models must be certified by actual pigging experiment. But there is not any found results of research on the experimental certification for dynamic behavior of the PIG. The reason is why the fabrication of the PIG as well as, a field application are very difficult. In this research, the effectiveness of the introduced solution using the method of characteristics (MOC) was certified through field application. In-line inspection tool, 30" geometry PIG, was fabricated and actual pigging was carried out at the pipeline segment in Korea Gas Corporation (KOGAS) high pressure system, Incheon LT (LNG Terminal) -Namdong GS (Governor Station) line. Pigging is fulfilled successfully. Comparison of simulation results with experimental results show that the derived mathematical models and the proposed computational schemes are effective for predicting the position and velocity of the PIG with a given operational conditions of pipeline.

Characteristics of the Running behavior and Safety for KTX due to Twist (수평틀림이 KTX 주행안전성에 미치는 영향 분석)

  • Choi, Il-Yoon;Lim, Yun-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.337-342
    • /
    • 2011
  • Vehicle dynamic behavior should be investigated to establish the track irregularity criteria because they have an impact on vehicle dynamic behavior. The influence of twist on running behavior and safety for KTX was instigated by numerical analysis among track geometry quality parameters such as vertical alignment, lateral alignment, twist and track gauge in this paper. The wavelength and amplitude of twist were considered in scenario of this numerical analysis. This research is based on just numerical analysis and the final result which include measurement will be published in the future.

  • PDF

Analysis of Dynamic Behavior of Spiral Grooved Air-Dynamic Bearings (나선홈을 가진 공기 동압베어링의 동역학적 거동 해석)

  • 신용호;최우천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.498-501
    • /
    • 2000
  • Air dynamic bearings are inherently unstable in dynamic behavior due to the varying angle of a force produced and the nonlinear characteristics of stiffness. In this study, such dynamic behavior is obtained and compared with experimental results. A body axis coordinate system is employed to avoid the change of a moment of inertia. FDM is used to calculate the pressure distribution on the bearing surface and then the force acting on the rotor was calculated by integrating the pressure distribution. By integrating accelerations which are calculated from the equations of motion using the 4th order Runge-Kutta method, the pose of the bearing at each time step is obtained.

  • PDF

Analysis of Optimal Dynamic Absorbing System considering Human Behavior induced by Transmitted Force

  • Kim, Hyo-Jun;Choe, Eui-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.38-43
    • /
    • 2003
  • In this study, the optimal dynamic absorbing system for the gas operated HIF (high implusive force) device has been investigated. For this purpose, firstly, the dynamic behavior of human body induced by impulsive disturbances has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic absorbing system, the parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation in the actual operating condition.