• Title/Summary/Keyword: dynamic absorber

Search Result 191, Processing Time 0.038 seconds

Characteristic and Development of All-in-one Shock Energy Absorber Lanyard Protection Tube used Super Fibers (슈퍼 섬유를 활용한 일체형 Shock Energy Absorber Lanyard Protection Tube 제조 및 특성분석)

  • Cho, Jin Won;Kwon, Sang Jun;Kim, Sang Tae;Yeum, Jeong Hyun;Kang, Ji Man;Ji, Byung Chul
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.106-113
    • /
    • 2014
  • Work-related falls are a major problem in the construction and roofing industries. To avoid serious injury to the worker caused by high decelerations or forces, different systems to absorb the energy of a fall are implemented in personal protective equipment. In this study, shock energy absorber lanyard protection tube was prepared using high tenacity PET fiber, P-aramid fiber, and UHMWPE fiber, respectively. Dynamic load test and static load test, bursting strength test based on the Korea fall protection equipment standard(Korea Occupational Safety & Health Agency standard 2013-13) or conformity European safety test(CE : EN355) were conducted. Especially maximum arrest force by dynamic load test of energy absorber showed below 6,000N.

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.

Design on a new oil well test shock absorber under impact load

  • Wang, Yuanxun;Zhang, Peng;Cui, Zhijian;Chen, Chuanyao
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.335-352
    • /
    • 2008
  • Continuous operation of test and measurement is a new operating technique in the petroleum exploitation, which combines perforation with test and measurement effectively. In order to measure the original pressure of stratum layer exactly and prevent testing instrument from being impaired or damaged, a suitable shock absorber is urgently necessary to research. Based on the attempt on the FEM analysis and experiment research, a new shock absorber is designed and discussed in this paper. 3D finite element model is established and simulated accurately by LS-DYNA, the effect and the dynamic character of the shock absorber impact by half sinusoidal pulse force under the main lobe frequency are discussed both on theoretics and experiment. It is shown that the new designed shock absorber system has good capability of shock absorption for the impact load.

A Study on the Influence of Design Parameters on the Automotive Shock Absorber Performance (차량용 충격흡수기의 설계변수에 따른 성능고찰)

  • 이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.167-177
    • /
    • 2003
  • In this study, a mathematical nonlinear dynamic model is introduced to predict the damping force of automotive shock absorber. And 11 design parameters were proposed for the sensitivity analysis of damping force. Design parameters consist of 5 piston valve design parameters, 5 body valve design parameters and 1 initial pressure of reservoir chamber air. All of these design parameters are main design parameters of shock absorber in the procedure of shock absorber design. The simulation results of this paper offer qualitative information of damping force variation according to variation of design parameters. Therefore, simulation results of this paper can be usefully use in the design procedure of shock absorber

The design of the robust hybrid controller for the construction using an active dynamic vibration absorber

  • Lee, Sang-Kyu;Lee, Jin-Ho;Hwang, I-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.75.4-75
    • /
    • 2001
  • This paper designs the robust hybrid controller for the multi degree-of-freedom system having uncertainty caused by modeling error and disturbances. The controlled plant is the construction which has an active dynamic vibration absorber on the top and is excited by the El Centre earthquake at the base. The active controller designed by the LQR(Linear Quadratic Regulator) and H-infinity control theory. The robustness of the hybrid H$\infty$ controller is compared with that of the hybrid LQ controller from computer simulation.

  • PDF

Vibration Reduction By Dynamic Absorber of Vertical Pump System (동흡진기를 통한 수직펌프의 진동 저감)

  • 배춘희;조철환;양경현;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.628-632
    • /
    • 2001
  • In this paper, Firstly, it is shown that the bending mode vibration source of vertical pump system is comparatively large because resonance. Secondly in order to the bending mode vibration of vertical pump some practical dynamic absorber have been developed and its effectiveness is investigated as installing it at the vertical pump system practically.

  • PDF

Design Parameter Analysis of a Dynamic Absorber for the Control of Machine Body Vibration (기계 진동의 수동적 제어를 위한 동흡진기 설계인자 해석)

  • Kim, Giman;Choi, Seongdae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The optimal design parameters of a dynamic absorber (DA) in a machine body (that is considered as a rigid body) are discussed in this paper. The bounce and rotation motions of the rigid body have been controlled passively by a DA, which consists of a mass and a spring. The rigid body is subjected to a harmonically excited force and supported by linear springs at both ends. To define the motion of a rigid body with a DA, the equation of motion was expressed in the third-order matrix form. To define the optimal design conditions of a DA, the reduction of dynamic characteristics, represented by the amplitudes of bounce and rotation, and the transmitted powers, were evaluated and discussed. The level of reduction was found to be highly dependent on the location and spring stiffness of the DA.

A Study on the Effects of Dual Dynamic Vibration Absorber for Damped Vibration System (감쇠진동계에 부착된 복합동흡진기의 효과에 관한 연구)

  • 안찬우;최석창;김동영
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1039-1048
    • /
    • 1997
  • This paper describes the effects of dual dynamic vibration absorbers attached to a primary vibration system with damping. The efficiency of dual dynamic vibration absorbers was investigated with the height of amplitude ratio at the resonance frequency ratio of the damped vibration system according to mass ratio, natural frequency ratio and damping ratio. The variation of amplitude ratio related to frequency ratio of primary vibration system is verified experimentally and theoretically according to dual dynamic vibration systems using computer program designed to find mutual relationship between two absorbers.

  • PDF

Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System (불규칙적으로 가진되는 동흡진기계의 비선형응답현상)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF

Response analysis of 6DOF fuselage model during taxiing for comparison of characteristics of single/double stage oleo-pneumatic shock absorber at nose (단-복동형 유.공압 완충장치의 전방장착특성 비교를 위한 6자유도 기체 모형의 지상 이동 응답해석)

  • Lee, Kook-Hee;Lee, Yoon-Kyu;Kim, Kwang-Joon;Lee, Sang-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.734-735
    • /
    • 2008
  • Shock absorber for rotorcraft landing gear should absorb landing impact during landing and isolate vibration to fuselage during taxiing. Double stage oleo-pneumatic shock absorber is known to have better performances than single stage oleo-pneumatic shock absorber. This paper deals with the z-direction translational acceleration at mass center, roil and pitch angular acceleration of fuselage for single and double stage oleo-pneumatic shock absorber at nose landing gear when a 6DOF rigid model is taxiing on the pound.

  • PDF