• Title/Summary/Keyword: dye-sensitized solar cell (DSSCs)

Search Result 100, Processing Time 0.023 seconds

Highly Efficient and Stable Organic Photo-Sensitizers based on Triphenylamine with Multi-anchoring Chromophore for Dye-sensitized Solar Cells (트리페닐아민을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyunsik;Jung, Daeyoung;Jung, Miran;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for the Dye-sensitized Solar Cell (DSSC). The efficiency of DSSC based on metal-free organic dyes is known to be much lower than that of Ru dyes generally, but a high solar energy-to-electricity conversion efficiency of up to 8% in full sunlight has been achieved by Ito et al. using an indoline dye. This result suggests that smartly designed and synthesized metal-free organic dyes are also highly competitive candidates for photosensitizers of DSSCs with their advantages mentioned above. Recently, the performance of DSSC based on metal-free organic dyes has been remarkably improved by several groups. We had reported the novel organic dye with double electron acceptor chromophore, which was a new strategy to design an efficient photosensitizer for DSSC. To verify the strategy, we synthesized organic dyes whose geometries, electronic structures and optical properties were derived from preceding density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In this paper, we successfully synthesized the chromophore containing multi-acceptor push-pull system from triphenylamine with thiophene moieties as a bridge unit. Organic dyes with a single electron acceptor and double acceptor system were also synthesized for comparison purposes. The photovoltaic performances of these dyes were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were also measured in order to characterize the effects of the multi-anchoring groups on the open-circuit voltage and the short-circuit current. In order to match specifications required for practical applications to be implemented outdoors, light soaking and thermal stability tests of these DSSCs, performed under $100mWcm^{-2}$ and $60^{\circ}C$ for 1000h.

  • PDF

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.

Application of electron beam irradiation for studying the degradation of dye sensitized solar cells (전자선 조사를 통한 염료감응형 태양전지의 분해 연구)

  • Akhtar, M.Shaheer;Lee, Hyun-Cheol;Min, Chun-Ji;Khan, M.A.;Kim, Ki-Ju;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.179-182
    • /
    • 2006
  • The effect of electron beam irradiation on dye sensitized solar cell (DSSC) has been studied to examine degradation of DSSC. The high-energy electron beam irradiation affects on the materials and performance of dye sensitized solar cells. We have checked the effects of electron beam irradiation of $TiO_2$ substrate with and without dye adsorption on the photovoltaic performances of resulting DSSCS and also studied the structural and electrical properties of polymers after irradiation. All solar cells materials were irradiated by electron beams with an energy source of 2MeV at different dose rates of 60 kGy, 120 kGy 240 kGy and 900 kGy and then their photoelectrical parameters were measured at 1 sun $(100 mW/cm^2)$. It was shown that the efficiency of DSSC was decreased as increasing the dose of e-beam irradiation due to lowering in $TiO_2$ crystallinity, decomposition of dye and oxidation of FTO glasses. On the other hand, the performance of solid-state DSSC with polyethylene oxide based electrolyte was improved after irradiation of e-beam due to enhancement of its conductivity and breakage of crosslinking.

  • PDF

Properties of Dinickel-Silicides Counter Electrodes with Rapid Thermal Annealing

  • Kim, Kwangbae;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.94-99
    • /
    • 2017
  • Dinickel-silicide $(Ni_2Si)/glass$ was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. $Ni_2Si$ was formed by rapid thermal annealing (RTA) at $700^{\circ}C$ for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, $Ni_2Si$ on quartz was also prepared through conventional electric furnace annealing (CEA) at $800^{\circ}C$ for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of $Ni_2Si$. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano $thick-Ni_2Si$ phase. The catalytic activity of $CEA-Ni_2Si$ and $RTA-Ni_2Si$ with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with $CEA-Ni_2Si$ and $RTA-Ni_2Si$catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick $Ni_2Si$ may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nano-thick $Ni_2Si$ can be made available on a low-cost glass substrate via the RTA process.

Solid-state Supramolecular polymer electrolytes containing double hydrogen bonding sites for high efficiency dye-sensitized solar cells(DSSCs) (초분자 고체전해질을 이용한 고효율 염료감응형 태양전지)

  • Kim, Sun-Young;Jeon, La-Sun;Lee, Yong-Gun;Kang, Yong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.309-311
    • /
    • 2007
  • Supramolecules containing double hydrogen bonding sites at their both chain ends were self-polymerized to become solid state polymer and were utilized to improve the efficiency of solid state DSSCs. Hydrogen bonding sites were attached at the chain ends of PEG of Mw=2000, such as pyrimethamine and glutaric acid. The solar cell with the solid state supramolecular polymer electrolyte resulted in the overall energy conversion efficiency of 4.63 % with a short circuit current density $(J_{sc})$ of 10.41 $mAcm^{-2}$, an open circuit voltage $V_{oc}$, of 0.71 V and a fill factor (FF) of 0.62 at one sun condition ([oligomer]:[1-methyl-3-propyl imidazolium iodide (MPII)]:$[I_2]$ = 20 : 1 : 0.19, active area = 0.16 $cm^2$, $TiO_2$ layer thickness = 10 ${\mu}m$). The ionic conductivity of the sol id state electrolyte was $5.11{\times}10^{-4}$ (S/cm). The cell performance was characterized by electrochemical impedance spectroscopy and ionic conductivity.

  • PDF

Effect of Transparency of CNT counter electrodes on the Efficiency of DSSCs

  • Lee, Won-Jae;Ramasamy, Easwaramoorthi;Lee, Dong-Yun;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.615-616
    • /
    • 2005
  • Carbon Nanotubes (CNT) on flexible indium tin oxide (ITO) PET films were prepared for dye-sensitized solar cell (DSSC). These CNTs were prepared by spray coating method for various amount of light transparency. Also, Pt counter electrode was prepared by electro deposition method. All $TiO_2$ electrodes were deposited on ITO-PET films by spray coating method. Micro structural images show that CNT counter electrodes prepared by spray-coating have more dense structure with increasing spraying time (0 to 60 seconds). DSSC consisting of $TiO_2$ electrode and CNT counter electrode was fabricated with various amount of light absorption. DSSC have higher light energy conversion efficiency with increasing the thickness of CNT counter electrode. CNT counter electrode is at least compatible to that of CNT counter electrode.

  • PDF

A Study on the Efficiency Improvement of Dye Sensitized Solar Cell (염료감응형 태양전지의 효율향상에 관한 연구)

  • Kim, Hee-Je;Seok, Young-Kuk;Kim, Ming-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.467-470
    • /
    • 2009
  • A novel 8 V DC power source with an external series-parallel connection of 50 Dye-Sensitized Solar Cells(DSSCs) has been proposed. One DSC has the optimized length to width ratio of $5.2{\times}2.6$ cm and an active area 8 $cm^2$($4.62{\times}1.73$ cm) which attained a conversion efficiency of 4.2%. From the electrochemical impedance spectroscopic analysis, it was found that the resistance elements related to the Pt electrode and electrolyte interface behave like that of diode and the series resistance corresponds to the sum of the other resistance elements. In addition, the TEMoo mode pulsed Nd:YAG laser beam is used to improve the incident photon to current efficiency(IPCE) of DSSC. From this result, this novel 8V-0.38A DC power source shows stable performance with an energy conversion efficiency of about 4.5% under 1 sun illumination(AM 1.5, Pin of 100 $mW/cm^2$).

  • PDF

V2O5-P2O5-ZnO-Sb2O3 Glass Frit Materials with BaO and Al2O3 for Large-sized Dye-sensitized Solar Cell Sealing

  • Lee, Han Sol;Cho, Jae Kwon;Hwang, Jae Kwon;Chung, Woon Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.114-118
    • /
    • 2015
  • $V_2O_5-P_2O_5-ZnO-Sb_2O_3$ glasses modified with BaO and $Al_2O_3$ are synthesized as a sealing material for large-scale dye-sensitized solar cells (DSSCs). A compositional study is performed in order to determine the glass that can be sintered below $500^{\circ}C$ with a high chemical stability against the electrolyte. The flow size of the glasses after the heat treatment and the glass stability are increased with the addition of $Al_2O_3$ and BaO, while the glass transition temperature is decreased. After the reaction with the electrolyte at $60^{\circ}C$ for 72 h, the addition of 5 mol% of BaO and 2 mol% of $Al_2O_3$ considerably enhances the chemical stability of the glass. X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to examine the reaction between the electrolyte and glasses. The structural contribution of the additives is also investigated and discussed.

Technology Development Trends of Self-Powered Next Generation Smart Windows (PV 일체형 차세대 스마트 윈도우 기술개발 동향)

  • Pyun, Sun Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.753-764
    • /
    • 2015
  • Among several types of energy saving smart window technologies, the leader, the dynamic EC (electrochromic) window one needs integrated PV (photovoltaics), to minimize expensive electrical wiring as well as to obviate the need for external energy. Self-powered smart windows were reviewed according to PV types used. DSSCs (dye sensitized solar cells) were found to be compatible with EC cells, to have several categories of next generation smart windows such as PECCs (photoelectrochromic cells), PVCCs (photovoltachromic cells), EC polymer PECCs. In addition silicon solar cells and third generation solar cells were investigated. They are summarized in a table showing their advantages and disadvantages respectively for a fast comparison. The strategy to expedite the commercialization of these next generation smart windows includes developing retrofit smart window coverings for use on flexible polymer substrates adhered to the inside surface of a window and easily replaced after use for upto 10 years.

Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells (카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성)

  • Kim, MyeongSeok;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF