• Title/Summary/Keyword: dye-sensitized solar cell(DSSC)

Search Result 176, Processing Time 0.028 seconds

The Effect of Sealing Technology on the Long-Term Stability of Dye-Sensitized Solar Cell Module (염료감응 태양전지 모듈의 장기안정성 향상을 위한 실링기술 연구)

  • Lee, Kwangsoo;Ko, Min Jae
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.155-158
    • /
    • 2016
  • Long-term stability of dye-sensitized solar cell (DSSC) module is critical for the commercialization. We investigated the effect of sealing technology on the long-term stability of the $10cm{\times}11cm$ sized DSSC modules. We applied the concept of secondary sealing to the module and then performed several stability tests such as humidity cycle, 1 sun light soaking and outdoor stability tests. The enhanced stability was confirmed for the DSSC module employing optimized sealing materials and architectures.

High Efficiency Dye-Sensitized Solar Cell Module (고효율 염료감응 태양전지 모듈)

  • Son Jung-Ho;Kang Man-Gu;Ryu Kwang Sun;Chang Soon Ho;Park Nam-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.147-149
    • /
    • 2005
  • Synthesis of $TiO_2$ nanoparticle paste is one of the important technologies in dye-sensitized solar cells (DSSC). Performances of the DSSCs from synthesized $TiO_2$ nanoparticle paste was similar or better than those from commercial sources. In addition. cell efficiency was further improved by using large scattering $TiO_2$ particles. Those results was utilized in manufacturing high efficiency DSSC modules.

  • PDF

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

A Study on the Characteristics of Dye Sensitized Solar Cells with Cell Area and Dye Absorption Time (셀 면적 및 흡착시간에 따른 염료감응형 태양전지 특성에 관한 연구)

  • Lee, Don-Kyu;Song, Young-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.595-600
    • /
    • 2012
  • In this paper, it is investigated the characteristics of DSSC(Dye Sensitized Solar Cell) with cell area(0.25, 1, 2.25 $cm^2$) and dye absorption time(12, 24, 36 h). Thus, we obtain the following results by using the EIS, UV-VIS, I-V measurement. When the cell area increases, the efficiency decreases to 21~32 percent because of the increase about 40~$60{\Omega}$ of internal impedance regardless of dye absorption time. When the absorption time increases up to 24 hours, the efficiency increases to over 40 percent cause of the reduction of internal impedance regardless of cell area. When the dye absorption time becomes 36 hours, the internal impedance increases and at the same time, in the range of 600~700 nm, as the optical absorption reduces. Therefore, the efficiency decreases to 19~31 percent. When it is absorbed the dye for 24 hours in the smallest cell area which is 0.25 $cm^2$, the DSSC has the best efficiency (7.11 %).

Study on the $N_2$ Plasma Treatment of Nanostructured $TiO_2$ Film to Improve the Performance of Dye-sensitized Solar Cell

  • Jo, Seul-Ki;Roh, Ji-Hyung;Lee, Kyung-Joo;Song, Sang-Woo;Park, Jae-Ho;Shin, Ju-Hong;Yer, In-Hyung;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.337-337
    • /
    • 2012
  • Dye sensitized solar cell (DSSC) having high efficiency with low cost was first reported by Gr$\ddot{a}$tzel et al. Many DSSC research groups attempt to enhance energy conversion efficiency by modifying the dye, electrolyte, Pt-coated electrode, and $TiO_2$ films. However, there are still some problems against realization of high-sensitivity DSSC such as the recombination of injected electrons in conduction band and the limited adsorption of dye on $TiO_2$ surface. The surface of $TiO_2$ is very important for improving hydrophilic property and dye adsorption on its surface. In this paper, we report a very efficient method to improve the efficiency and stability of DSSC with nano-structured $TiO_2$. Atmospheric plasma system was utilized for nitrogen plasma treatment on nano-structured $TiO_2$ film. We confirmed that the efficiency of DSSC was significantly dependent on plasma power. Relative in the $TiO_2$ surface change and characteristics after plasma was investigated by various analysis methods. The structure of $TiO_2$ films was examined by X-ray diffraction (XRD). The morphology of $TiO_2$ films was observed using a field emission scanning electron microscope (FE-SEM). The surface elemental composition was determined using X-ray photoelectron spectroscopy (XPS). Each of plasma power differently affected conversion efficiency of DSSC with plasma-treated $TiO_2$ compared to untreated DSSC under AM 1.5 G spectral illumination of $100mWcm^{-2}$.

  • PDF

Preparation of Dye Sensitized Solar Cell Using Coumarin Dyes Extracted from Plants (식물에서 추출한 천연 쿠마린계 염료를 이용한 염료감응 태양전지의 제조)

  • Jung, Onyu;Lee, Sang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.157-161
    • /
    • 2013
  • Low priced and environment-friendly natural dye from coumarin- containing plants for the dye sensitized solar cell (DSSC) was developed. Dyes were extracted from cinnamon and angelica that contained coumarin derivatives, and DSSCs employing these dyes were prepared. PV efficiency of 0.75% was obtained from cinnamon dye, which is comparable to the highest efficiency reported in precedent studies about natural dye DSSC. It was confirmed by UV-visible and FT-IR spectroscopy that coumarin derivatives in the plants acted as photosensitive material.

An Overview Of Nanonet Based Dye-Sensitized Solar Cell (DSSC) In Solar Cloth

  • Othman, Mohd Azlishah;Ahmad, Badrul Hisham;Amat, Noor Faridah
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.635-646
    • /
    • 2013
  • This technical paper contains the information of the Dye-Sensitized Solar Cells (DSSC) working principal where diffusion mechanism acts as electron transport to absorb the sunlight energy to generate the electrical energy. DSSC is photo electrochemical cell that implements the application of photosynthesis process. The performance of electron transport in DSSC has been reviewed in order to enhance the performance and efficiency of electron transport. The improvement of the electron transport also discussed in this paper.

Electrochemical Approaches to Dye-Sensitized Solar Cells (염료감응 태양전지의 전기화학적 접근을 통한 해석)

  • Jo, Yim-Hyun;Lim, Jeong-Min;Nam, Hee-Jin;Jun, Yong-Seok
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.301-310
    • /
    • 2009
  • This paper describes one of the hot issues in solar cell studies, dye-sensitized solar cell. DSSC is a kind of photoelectrochemical cells. Therefore, it is quite different from the conventional solar cells which originate from pn semiconductor theory, although its mechanism can be explained with the theory. This paper describes the difference between the conventional semiconductor approaches and a newly adapted one for DSSC. Especially, electrochemical analysis methods such as electrochemical impedance analysis and cyclic voltammogram are briefly introduced, which are commonly used for DSSC analysis.

Effect of HfO2 Thin Film for Blocking Layer of Dye-Sensitized Solar Cell

  • Jo, Dae-Hui;Lee, Gyeong-Ju;Song, Sang-U;Kim, Hwan-Seon;Cheon, Eun-Yeong;Jang, Ji-Hun;Mun, Byeong-Mu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.360.1-360.1
    • /
    • 2014
  • DSSC (Dye-Sensitized Solar Cell)의 TCO (Transparent Conductive Oxide)와 전해질 사이의 전자 재결합(Back reaction)은 DSSC의 효율을 떨어뜨리는 요소 중 하나이다. 이와 같은 문제점을 해결하기 위하여 Blocking layer로서 $TiO_2$ 가 많이 사용되어지고 있다. 본 실험에서는 $HfO_2$ 를 Blocking layer로 사용하여 전자 재결합으로 인한 효율 저하를 막기 위한 연구를 진행하였다. 기존 $TiO_2$ 대비 $HfO_2$는 큰 에너지 밴드갭을 가지고 있어, TCO와 전해질 사이에 전자 재결합을 줄여주는 역할을 하기 때문에 DSSC의 효율 향상을 확인할 수 있다. 효율 측정은 1sun (100 mW/cm, AM1.5)조건에서 solar simulator를 이용하여 측정 했으며, 전자 재결합 감소는 Dark Current, EIS (Electrochemical Impedance spectroscopy)의 측정을 통하여 확인하였다. $HfO_2$를 이용한 blocking layer를 염료 감응 태양전지에 적용하면, 전자 재결합에 의한 손실을 줄여 성능적 측면에서 개선 가능할 것으로 생각된다.

  • PDF

Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

  • Chae, Sang Youn;Jung, Hejin;Joo, Oh-Shim;Hwang, Yun Jeong
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.82-85
    • /
    • 2015
  • Photoelectrochemical cell (PEC) is one of the attractive ways to produce clean and renewable energy. However, solar to hydrogen production via PEC system generally requires high external bias, because of material's innate electronic band potential relative to hydrogen reduction potential and/or charge separation issue. For spontaneous photo-water splitting, here, we design dye-sensitized solar cell (DSSC) and their monolithic tandem cell incorporated with a $BiVO_4$ photoanode. $BiVO_4$ has high conduction band edge potential and suitable band gap (2.4eV) to absorb visible light. To achieve efficient $BiVO_4$ photoanode system, electron and hole mobility should be improved, and we demonstrate a tandem cell in which $BiVO_4/WO_3$ film is connected to cobalt complex based DSSC.