• Title/Summary/Keyword: dye deposition

Search Result 89, Processing Time 0.034 seconds

Use of Dye Deposition in Cows' Excised Genital Tract to Evaluate Inseminators' and Refreshment Training to Refreshment Training to Improve Their Skill

  • Mohammed S.;Mohammad S. H.;Mohhammad A. R. S.;Khan A.H.M.S.I.
    • Journal of Embryo Transfer
    • /
    • v.20 no.2
    • /
    • pp.157-162
    • /
    • 2005
  • To find out the possible inefficiencies of artificial inseminators at rectovaginal insemination in cows, inseminators' skill were evaluated by controlling the semen thawing procedure adopted and by using the technique of dye deposition in the genital tract of slaughtered cows. This was followed by refreshment training for the inseminators. Thirty seven artificial insemination technicians regularly working in the government, cooperative and NGO (Non Government Organization) artificial insemination programmes at different places of Bangladesh were included in the study. Individual technicians were asked to thaw a semen straw and deposit dye in the genital tract of slaughtered cows following the procedures they would have adopted in their actual practices of insemination. The time and water temperature adopted by technicians were recorded and genital tract after sham artificial insemination was dissected to determine the site of dye deposition. Then, the inseminators took part in a three days intensive training program. The training program was ended up with the same tests for thawing frozen semen straw and dye deposition in the genital tract of slaughtered cows. At pre training evaluation, only $25\%\;and\;72\%\;(n=36)$ inseminators adopted co..ect thawing time and temperature, respectively. At post training evaluation, all inseminators thawed semen straws for proper time and temperature. At pretraining evaluation, $21(57\%),\;11 (30\%)\;and\;3(8\%)$ inseminators deposited dye at the body of uterus, in the vagina or in cervix, and into the horn of uterus, respectively. In $2(5\%)$ cases dye did not pass into the genital tract, instead back flowed through the space between the barrel of insemination gun and sheath. At post training evaluation, all inseminators successfully deposited dye in the body of uterus. Frequent evaluation of inseminators' skill and subsequent training would help improvement of the artificial insemination technicians' skill.

Measurement of Spray Deposit Amount Using Spectrophotometer and Food Dye as Tracer

  • Rhee, J.Y.;Ahn, S.Y.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-21
    • /
    • 2000
  • Measurement of spray deposit is necessary for evaluation of a chemical application technology. However it is not easy and time consuming. A simple method for measuring the deposition amount of spray using a tracer and a spectrophotometer was developed. Various materials were tested to determine an adequate tracer. Food dye was selected as a tracer, because it was cheep and easily treatable. Using NIRS(Near Infrared Reflection Spectrophotometer), a regression curves between maximum absorbance of a solution and concentration of the tracer were obtained. Yellow food dye solution showed a peak of spectrum at 452 nm, and absorbance of peak showed a tendency to increase as concentration increased. Green or pink food dye were tested and judged to be good tracers. However, tracer concentration should not exceed certain limits in order to measure maximum absorption. Using spraying liquid with known tracer concentration and known amount of washing liquid, spray deposit amount on real targets on leaves could be estimated at less than 13% error level.

  • PDF

Synthesis and Characterization of Graphene Counter Electrode By Electrophoretic Deposition for Dye-Sensitized Solar Cells

  • Choe, Yun-Su;Gong, Jae-Seok;Choe, Hyeon-Gwang;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.160-160
    • /
    • 2013
  • Dye-sensitized solar cells (DSSCs) have attracted much attention because of their moderate light-to-electricity conversion efficiency, easy fabrication, and low cost. At present, platinum (Pt) is used as a counter electrode in DSSCs. However, it is found that Pt dissolves in iodide electrolyte solutions and creates chemical compound such as PtI4 and H2PtI6. Carbon based materials are one of candidates for a counter electrode of DSSCs. We prepare two types of graphite oxides by different chemical treatments; original graphite oxide, hydrazine treated graphite oxide. Each graphite oxide and magnesium nitrate dispersed in deionized water are prepared as solutions for electrophoretic deposition (EPD). Each graphite oxide electrode is deposited on fluorine-doped tin oxide (FTO) substrate by EPD method. Structural and electrochemical properties of each electrode are investigated by field-emission scanning electron microscopy and electrochemical impedance spectroscopy, respectively.

  • PDF

Fabrication of $TiO_2$ Blocking Layers for CuSCN Based Dye-Sensitized Solar Cells by Atomic Layer Deposition Method

  • Baek, Jang-Mi;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.310.2-310.2
    • /
    • 2013
  • For enhancement of dye-sensitized solar cell performance, TiO2 blocking layer has been used to prevent recombination between electron and hole at the conducting oxide and electrolyte interface. In solid state dye-sensitized solar cells, it is necessary to fabricate pin-hole free TiO2 blocking layer. In this work, we deposited the TiO2 blocking layer on conducting oxide by atomic layer deposition and compared the efficiency. To compare the efficiency, we fabricate solid state dye-sensitized solar cell with using CuSCN as hole transport material. We see the efficiency improve with 40nm TiO2 blocking layer and the TiO2 blocking layer morphology was characterized by SEM. Also, we used this blocking layer in TiO2/Sb2S3/ CuSCN solar cell.

  • PDF

Template-directed Atomic Layer Deposition-grown $TiO_2$ Nanotubular Photoanode-based Dye-sensitized Solar Cells

  • Yu, Hyeon-Jun;Panda, Sovan Kumar;Kim, Hyeon-Cheol;Kim, Myeong-Jun;Yang, Yun-Jeong;Lee, Seon-Hui;Sin, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.239.1-239.1
    • /
    • 2011
  • Dye sensitized solar cells (DSC) are promising devices for inexpensive, nontoxic, transparent, and large-scale solar energy conversion. Generally thick $TiO_2$ nanoporous films act as efficient photoanodes with their large surface area for absorbing light. However, electron transport through nanoparticle networks causes the slowdown and the loss of electron transport because of a number of interparticle boundaries inside the conduction path. We have studied DSCs with precisely dimension-controlled $TiO_2$ nanotubes array as photoanode. $TiO_2$ nanotubes array is prepared by template-directed fabrication method with atomic layer deposition. Well-ordered nanotubes array provides not only large surface area for light absorbing but also direct pathway for electrons with minimalized grain boundaries. Large enlongated anatase grains in the nanotubes could enhance the conductivity of electrons, but also suppress the recombination with holes through defect sites during diffusion into the electrode. To study the effect of grain boundaries, we fabricated two kinds of nanotubes which have different grain sizes by controlling deposition conditions. And we studied electron conduction through two kinds of nanotubes with different grain structures. The solar cell performance was studied as a function of thickness and grain structures. And overall solar-to-electric energy conversion efficiencies of up to 7% were obtained.

  • PDF

A study on the fabrication and efficeiency enhancement of flexible Dye-Sensitized Solar Cell(DSSC) using Nano Particle Deposition System(NPDS) and UV laser treatment (나노 입자 적층 시스템과 UV 레이저를 이용한 유연기판 염료감응형 태양전지의 제작과 효율 향상에 대한 연구)

  • Choi, J.O.;Ahn, S.H.;Lee, G.Y.;Kim, C.S.;Kim, D.H.;Lee, H.T.;Park, J.I.;Lee, C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.789-790
    • /
    • 2012
  • PDF

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

Room temperature-processed TiO2 coated photoelectrodes for dye-sensitized solar cells

  • Kim, Dae-gun;Lee, Kyung-min;Lee, Hyung-bok;Lim, Jong-woo;Park, Jae-hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.61-65
    • /
    • 2020
  • The depletion of fossil fuels and the increase in environmental awareness have led to greater interest in renewable energy. In particular, solar cells have attracted attention because they can convert an infinite amount of solar energy into electricity. Dye-sensitize solar cells (DSSCs) are low cost third generation solar cells that can be manufactured using environmentally friendly materials. However, DSSC photoelectrodes are generally produced by screen printing, which requires high temperature heat treatment, and low temperature processes that can be used to produce flexible DSSCs are limited. To overcome these temperature limitations, this study fabricated photoelectrodes using room-temperature aerosol deposition. The resulting DSSCs had an energy conversion efficiency of 4.07 %. This shows that it is possible to produce DSSCs and flexible devices using room-temperature processes.