• Title/Summary/Keyword: duty cycle control

Search Result 225, Processing Time 0.028 seconds

A Modularized Charge Equalizer Using the Magnetizing Energy of the Multi-Winding Transformer (다권선 변압기의 자화 에너지를 이용한 모듈화 전하 균일 장치)

  • Lim, Chang-Soon;Hyun, Dong-Seok;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.393-400
    • /
    • 2012
  • The modularized equalizers normally use additional components among the modules in the long series-connected lithium-ion battery string. In these approaches, the overall systems are heavy, bulky, and high-priced. Furthermore, the losses related to additional components decrease the system efficiency. To avoid these problems, a modularized equalizer, which has no additional components among the modules, is required. This paper proposes a novel control scheme using the magnetizing energy of the multi-winding transformer for the module equalization. In this scheme, the high duty cycle is applied to the module where the voltage is higher than the reference voltage and the low duty cycle is applied to the module where the voltage is lower than the reference voltage. Due to the different duty cycle, more electric charges are transferred from high voltage module to the low voltage module during the turn-off switching interval. Using the proposed control scheme, the equalizer system does not suffer from the size, cost, and loss related to the modularization. The experimental results are provided to verify the effectiveness of the proposed modularized equalizer.

Photovoltaic System for SPIM Vector control (SPIM 벡터제어를 위한 태양광 발전 시스템)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the photovoltaic(PV) water pumping system with a maximum power point tracking(MPPT). The wale- pumping system uses a variable speed single phase induction motor(SPIM) driven a centrifugal pimp by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage ($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

Inband Signaling on the Control Pilot of Electric Vehicle Supply Equipment (전기자동차 충전스탠드의 제어파일럿 신호를 이용한 대역 내 통신 방식)

  • Kim, Chul-Woo;Kim, Sang-Beom;Lim, You-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2019-2020
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. Control Pilot is an electric signal generated by EVSE and is transmitted to the electric vehicle by a vehicle coupler and a contact. The duty cycle of control pilot determines the maximum current to be drawn by electric vehicle. When the duty cycle is 5%, it is indicated that digital communication is needed. This paper deals with the data format and definition about communication scheduling through the inband signal on the control pilot of EVSE.

  • PDF

A Novel Three-Port Converter for the On-Board Charger of Electric Vehicles (새로운 전기 자동차 온보드 충전기용 3-포트 컨버터)

  • Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.111-112
    • /
    • 2017
  • This paper presents a novel three-port converter for the OnBoard Charger of Electric Vehicles by using an impedance control network. The proposed concept is suitable for charging a main battery and an auxiliary battery of an electric vehicle at the same time due to its power handling capability of the converter without additional switches. The power flow is managed by the phase angle (${\Theta}$) between the ports whereas voltage at each port is controlled by the asymmetric duty cycle and the phase shift (${\Phi}$) between the inverter lags controlled by the impedance control network. The proposed system has a capability of achieving zero voltage switching (ZVS) and zero current switching (ZCS) at all the switches over the wide range of input voltage, output voltage and output power. The feasibility of the proposed system is verified by the PSIM simulation.

  • PDF

The Changes of Breathing Pattern Observed During Maximal Exercise Testing in the Patients with Chronic Airflow Obstruction : the Correlation Between the Change of Inspiratory Duty Cycle and the Degree of Airflow Obstruction (만성기도폐쇄 환자에서 최대운동부하시 관찰되는 호흡양상 - 기도폐쇄정도와 흡기책임비율변화 사이의 상관관계 -)

  • Lee, Kye-Young;Jee, Young-Koo;Kim, Keun-Youl
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.574-582
    • /
    • 1997
  • Background : Normal humans meet the increased ventilatory need during exercise initially by the increase of tidal volume (TV) and later by the increase of respiratory frequency (Rf). And the inspiratory duty cycle (Ti/Ttot) is also increased more than 50% for the compensation of the decrease of respiratory cycle provoked by the increase of respiratory frequency. The patients with chronic airflow obstruction show rapid and shallow breathing pattern during exercise because of the decreased ventilatory capacity and the increased dead space ventilation. However, the studies about the change of inspiratory duty cycle are only a few and there is no literature about the relationship between the change of inspiratory duty cycle and the degree of airflow obstruction. Methods : The subjects were the twelve patients with chronic airflow obstruction (CAO) and ten normal people. The incremental exercise test was done. The increase of work load was 10 W in CAO group and 25 W in normal control group. The analysis of the results was done by the comparison of the parameters such as minute ventilation (VE), TV, Rf, physiologic dead space (Vd/Vt), and inspiratory duty cycle between the two groups. Each parameters were compared after transformation into % control duration base that means dividing the total exercise time into five fractions and % control duration data were obtained at rest, 20%, 40%, 60%, 80%, and max. Statistical analysis was done by repeated measure ANOVA using SAS program. Results : The changes of VE and TV were significantly different between two groups while the change of Rf was not significant. The decrease of Vd/Vt was significantly low in CAO group. Ti/Ttot was markedly increased from 38.4 + 3.0% at rest to 48.6 + 4.5% at max in normal control group while Ti/Ttot showed little change from 40.5 + 2.2% at rest to 42.6 + 3.5% at max. And the change of inspiratory duty cycle showed highly good correlation with the degree of airflow obstruction (FEV1%). (r=0.8151, p < 0.05). Conclusions : The increase of Ti/Ttot during exercise observed in normal humans is absent in the patients with CAO and the change of Ti/Ttot is well correlated with the degree of airflow obstruction.

  • PDF

A High-Speed Dual-Modulus Prescaler Using Selective Latch Technique (Selective Latch Technique을 이용한 고속의 Dual-Modulus Prescaler)

  • 김세엽;이순섭김수원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.779-782
    • /
    • 1998
  • This paper describes a high-speed Dual-modulus Prescaler (DMP) for RF mobile communication systems with pulse remover using selective latch technique. This circuit achieves high speed and low power consumption by reducing full speed flip-flops and using a selective latch. The proposed DMP consists of only one full speed flip-flop, a selective latch, conventional flip-flops, and a control gate. In order to ensure the timing of control signal, duty cycle problem and propagation delay must be considered. The failling edgetriggered flip-flops alleviate the duty cycle problem andthis paper shows that the propagation delay of control signal doesn't matter. The maximum operating frequency of the proposed DMP with 0.6um CMOS technology is up to 2.2㎓ at 3.3V power supply and the circuit consumes 5.24mA.

  • PDF

Digitally Current Controlled DC-DC Switching Converters Using an Adjacent Cycle Sampling Strategy

  • Wei, Tingcun;Wang, Yulin;Li, Feng;Chen, Nan;Wang, Jia
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.227-237
    • /
    • 2016
  • A novel digital current control strategy for digitally controlled DC-DC switching converters, referred to as Adjacent Cycle Sampling (ACS), is proposed in this paper. For the ACS current control strategy, the available time interval from sampling the current to updating the duty ratio, is approximately one switching cycle. In addition, it is independent of the duty ratio. As a result, the contradiction between the processing speed of the hardware and the transient response speed can be effectively relaxed by using the ACS current control strategy. For digitally controlled buck DC-DC switching converters with trailing-edge modulation, digital current control algorithms with the ACS control strategy are derived for three different control objectives. These objectives are the valley, average, and peak inductor currents. In addition, the sub-harmonic oscillations of the above current control algorithms are analyzed and eliminated by using the digital slope compensation (DSC) method. Experimental results based on a FPGA are given, which verify the theoretical analysis results very well. It can be concluded that the ACS control has a faster transient response speed than the time delay control, and that its requirements for hardware processing speed can be reduced when compared with the deadbeat control. Therefore, it promises to be one of the key technologies for high-frequency DC-DC switching converters.

Model Predictive Power Control of a PWM Rectifier for Electromagnetic Transmitters

  • Zhang, Jialin;Zhang, Yiming;Guo, Bing;Gao, Junxia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.789-801
    • /
    • 2018
  • Model predictive direct power control (MPDPC) is a widely recognized high-performance control strategy for a three-phase grid-connected pulse width modulation (PWM) rectifier. Unlike those of conventional grid-connected PWM rectifiers, the active and reactive powers of permanent magnet synchronous generator (PMSG)-connected PWM rectifiers, which are used in electromagnetic transmitters, cannot be calculated as the product of voltage and current because the back electromotive force (EMF) of the generator cannot be measured directly. In this study, the predictive power model of the rectifier is obtained by analyzing the relationship among flux, back EMF, active/reactive power, converter voltage, and stator current of the generator. The concept of duty cycle control in the proposed MPDPC is introduced by allocating a fraction of the control period for a nonzero vector and rest time for a zero vector. When nonzero vectors and their duration in the predefined cost function are simultaneously evaluated, the global power ripple minimization is obtained. Simulation and experimental results prove that the proposed MPDPC strategy with duty cycle control for the PMSG-connected PWM rectifier can achieve better control performance than the conventional MPDPC-SVM with grid-connected PWM rectifier.

Micro-scale Solar Energy Harvesting System with a New MPPT control (새로운 MPPT 제어기능을 갖는 마이크로 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yoon, Il-Young;Choi, Sun-Myung;Park, Youn-Soo;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2627-2635
    • /
    • 2013
  • In this paper micro-scale solar energy harvesting system with a new MPPT control are proposed. In conventional solar energy harvesting systems, continuous perturbation techniques of the clock frequency or duty cycle of a power converter have been used to implement MPPT(Maximum Power Point Tracking) control. In this paper, we propose a new MPPT technique to control the duty cycle of a power switch powering a power converter. The proposed circuit is designed in $0.35{\mu}m$ CMOS process, and the designed chip area including pads is $770{\mu}m{\times}800{\mu}m$.

Performance Evaluation of X-MAC/BEB Protocol for Wireless Sensor Networks

  • Ullah, Ayaz;Ahn, Jong-Suk
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.857-869
    • /
    • 2016
  • This paper proposes an X-MAC/BEB protocol that runs a binary exponential backoff (BEB) algorithm on top of an X-MAC protocol to save more energy by reducing collision, especially in densely populated wireless sensor networks (WSNs). X-MAC, a lightweight asynchronous duty cycle medium access control (MAC) protocol, was introduced for spending less energy than its predecessor, B-MAC. One of X-MAC 's conspicuous technique is a mechanism to allow senders to promptly send their data when their receivers wake up. X-MAC, however, has no mechanism to deal with sudden traffic fluctuations that often occur whenever closely located nodes simultaneously diffuse their sense data. To precisely evaluate the impact of the BEB algorithm on X-MAC, this paper builds an analytical model of X-MAC/BEB that integrates the BEB model with the X-MAC model. The analytical and simulation results confirmed that X-MAC/BEB outperformed X-MAC in terms of throughput, delay, and energy consumption, especially in congested WSNs.