• Title/Summary/Keyword: dust storm

Search Result 65, Processing Time 0.018 seconds

A Study on the PM2.5 Source Characteristics Affecting the Seoul Area Using a Chemical Mass Balance Receptor Model (수용모델을 이용한 서울지역 미세입자 (PM2.5)에 영향을 미치는 배출원 특성에 관한 연구)

  • Lee Hak Sung;Kang Choong-Min;Kang Byung-Wook;Lee Sang-Kwun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.329-341
    • /
    • 2005
  • The purpose of this study is to study the $PM_{2.5}$ source characteristics affecting the Seoul area using a chemical mass balance (CMB) receptor model. This study was also to evaluate the $PM_{2.5}$ source profiles, which were directly measured and developed. Asian Dust Storm usually occurred in the spring, and very high $PM_{2.5}$ concentrations were observed in the fall among the sampling periods. So the ambient data collected in the spring and fall were evaluated. The CMB model results as well as the $PM_{2.5}$ source profiles were validated using the diagnostic categories, such as: source contribution estimate, t-statistic, R-square, Chi-square, and percent of total mass explained. In the spring months, the magnitude of $PM_{2.5}$ mass contributors was in the following order: Chinese aerosol $(31.7\%)>$ secondary aerosols ($22.3\%$: ammonium sulfate $13.4\%$ and ammonium nitrate $8.9\%)>$ vehicles ($16.1\%$: gasoline vehicle $1.4\%$ and diesel vehicles $14.7\%)>$biomass burning $(15.5\%)>$ geological material $(10.5\%)$. In the fall months, the general trend of the $PM_{2.5}$ mass contributors was the following: biomass burning $(31.1\%)>$ vehicles ($26.9\%$: gasoline vehicle $5.1\%$ and diesel vehicles $21.8\%)>$ secondary aerosols ($23.0\%$: ammonium sulfate $9.1\%$ and ammonium nitrate $13.9\%)>$ Chinese aerosol $(10.7\%)$. The results show that the $PM_{2.5}$ mass in the Seoul area was mainly affected by the Chinese area.

Characteristics of Aerosol and Cloud Condensation Nuclei Concentrations Measured over the Yellow Sea on a Meteorological Research Vessel, GISANG 1 (기상 관측선 기상 1호에서 관측한 황해의 에어로졸과 구름응결핵 수농도 특성 연구)

  • Park, Minsu;Yum, Seong Soo;Kim, Najin;Cha, Joo Wan;Ryoo, Sang Boom
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.243-256
    • /
    • 2016
  • Total number concentration of aerosols larger than 10 nm ($N_{CN10}$), 3 nm ($N_{CN3}$), and cloud condensation nuclei ($N_{CCN}$) were measured during four different ship cruises over the Yellow Sea. Average values of $N_{CN10}$ and $N_{CCN}$ at 0.6% supersaturation were 6914 and $3353cm^{-3}$, respectively, and the minimum value of $N_{CN10}$ was $2000cm^{-3}$, suggesting significant anthropogenic influence even at relatively clean marine environment. Although $N_{CN10}$ and $N_{CN3}$ increased near the coast due to anthropogenic influence, $N_{CCN}$ was relatively constant and therefore $N_{CCN}/N_{CN10}$ ratio tended to decrease, suggesting that coastal aerosols were relatively less hygroscopic. In general $N_{CN10}$, $N_{CN3}$, and $N_{CCN}$ during the cruises seemed to be significantly influenced by wet scavenging effects (e.g. fog) and boundary layer height variation. Only one new particle formation (NPF) event was observed during the measurement period. Interestingly, the NPF event occurred during a dust storm event and spatial scale of the NPF event was estimated to be larger than 100 km. These results demonstrate that aerosol and CCN concentration over the Yellow Sea can vary due to various different factors.

Spatial Analysis of Major Atmospheric Aerosol Species Using Earth Observing Satellite Data (지구관측 위성자료를 이용한 주요 대기 에어러솔 성분의 공간분포 분석)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.109-127
    • /
    • 2011
  • Atmospheric aerosols, small particles in the atmosphere, are one of the important parameters in climate change and human health. Additionally, accurate estimates of aerosol species are increasingly important in environmental impact assessment studies. Recent advances in global satellite remote sensing provide powerful tool for air quality monitoring. This study explores the potential usage of satellite derived data such as atmospheric aerosols for air quality monitoring as well as climate change study. The objectives of this study is to understand the general features of the global distribution of type dependent aerosols. A detailed spatio-temporal variability of the each different satellite dataset shows the variation of the global zonal average and specific geographical regions where the strong emission sources are located. Especially, significantly large aerosol amounts are observed in Asia and Africa because of the desert dust storm, anthropogenic and biomass burning emissions.

Relationship between PM2.5 Mass Concentrations and MODIS Aerosol Optical Thickness at Dukjuk and Jeju Island (제주도와 덕적도에서 관측된 초미세입자(PM2.5) 농도와 MODIS 에어러솔 광학두께와의 관계)

  • Lee, Kwon-Ho;Park, Seung-Shik
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.449-458
    • /
    • 2012
  • Using the MODerate resolution Imaging Spectro-radiometer (MODIS) retrieved aerosol optical thickness (AOT) along with ground measurements of PM2.5 mass concentration, we assessed local air quality over Dukjuk and Jeju island and estimated possibility of satellite derived PM2.5 during nine intensive observation periods in 15 October 2005 - 24 October 2007. Averaged PM2.5 mass concentrations showed relatively variable as $25.61{\pm}22.92{\mu}g/m^3$ at Dukjuk and $17.33{\pm}10.79{\mu}g/m^3$ at Jeju. The maximum values of $188.89{\mu}g/m^3$ (Dukjuk) and $50.46{\mu}g/m^3$ (Jeju) were recorded during Asian dust storm day. Similarly, the maximum values of MODIS AOT were found as 3.73 (Gosan) and 1.14 (Jeju). Averaged MODIS AOTs at Dukjuk ($0.79{\pm}0.81$) were larger than that at Jeju ($0.42{\pm}0.24$). An empirical relationship between MODIS AOT and PM2.5 mass was obtained and results show that there was a good correlation between satellite and ground based values with a linear correlation coefficient of 0.85 at Dukjuk. The result clearly demonstrates that satellite derived AOT is a good surrogate for monitoring PM air quality over study area. However, meteorological and other ancillary datasets are necessary to further apply satellite data for air quality research.

Identifying Yellow Sand from the Ocean Color Sensor SeaWIFS Measurements (해색 센서 SeaWiFS 관측을 이용한 황사 판독)

  • 손병주;황석규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.366-375
    • /
    • 1998
  • Optical characteristics of the yellow sand and their influences on the ocean color remote sensing has been studied using ocean color sensor SeaWiFS measurements. Two cases of April 18 and April 25, 1998, representing yellow sand and background aerosol, are selected for emphasizing the impact of high aerosol concentration on the ocean color remote sensing. It was shown that NASA's standard atmospheric correction algorithm treats yellow sand area as either too high radiance or cloud area, in which ocean color information is not generated. Optical thickness of yellow sand arrived over the East Asian sea waters in April 18 indicates that there are two groups loaded with relatively homogeneous yellow sand, i.e.: heavy yellow sand area with optical thickness peak around 0.8 and mild area with about 0.4, which are consistent with ground observations. The movement of the yellow sand area obtained from surface weather maps and backward trajectory analysis manifest the notion that the weak yellow sand area was originated from the outer region of the dust storm. It is also noted that high optical thickness associated with the yellow sand is significantly different from what we may observe from background aerosol, which is about 0.2. These characteristics allow us to determine the yellow sand area with an aid of atmospheric correction parameter. Results indicate that the yellow sand area can be determined by applying the features revealed in scattergrams of atmospheric correction parameter and optical thickness.