• Title/Summary/Keyword: dust fluid

Search Result 108, Processing Time 0.026 seconds

Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation

  • Won-Kyung Yang;Sung-Won Kim;Soo Hyun Youn;Sun Hee Hyun;Chang-Kyun Han;Yang-Chun Park;Young-Cheol Lee;Seung-Hyung Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.81-88
    • /
    • 2023
  • Background: Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods: Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 ㎛) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results: KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.

Anti-asthmatic Effect of Alismatis Rhizoma and Alisol Acetate B Combination Therapy in a Murine Asthma Model (택사와 alisol B acetate의 병용 투여가 천식 동물 모델에 미치는 영향)

  • Park, Mi-jun;Heo, June-yi;Kwun, Min-jung;Han, Chang-woo
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.6
    • /
    • pp.891-901
    • /
    • 2017
  • Objectives: The aim of the study was to evaluate the anti-asthmatic effect of alismatis rhizoma and alisol acetate B combination therapy in a murine asthma model. Methods: C57BL/6 mice were sensitized to and challenged with a mixture of ragweed, dust mite, and aspergillus to induce an asthma animal model. Alismatis rhizoma extract and alisol acetate B combination therapy was co-administered only in the experimental group. To evaluate the anti-asthmatic effect of the combination therapy, inflammatory cell counts in bronchoalveolar lavage (BAL) fluid were determined, and tissue was examined histologically with hematoxylin and eosin (H & E) and periodic acid-Schiff (PAS) stains, by enzyme-linked immunosorbent assay (ELISA) of IgE, IL-4, and IL-5, and with reverse transcription polymerase chain reaction (RT-PCR) of IL-5, IL-33, MUC5AC. Results: Alismatis rhizoma and alisol acetate B combination therapy reduced the number of inflammatory cells, alleviated histologic features, and down-regulated all the investigated asthma mediators, IgE, IL-4, IL-5, IL-33, and MUC5AC. Conclusions: According to the above results, alismatis rhizoma and alisol acetate B combination therapy may have therapeutic potential for asthma.

A Numerical Study on Flow Field near the Roller Conveyor for Flat Panel Display (평면 디스플레이 기판 운송용 롤러 컨베이어 주위의 유동장에 관한 수치해석 연구)

  • Jeon, Hyun-Joo;Kim, Hyoung-Jin;Im, Ik-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.6-11
    • /
    • 2009
  • Flow field in a roller conveyor system, induced from the movement of a cassette in which glasses for flat panel display are loaded, is numerically studied in this paper. Contamination on the glass surface by dust particles produced from mechanical friction between roller and cassette is predicted from the analysis results of flow fields. Results show that a large swirl flow is formed under the moving cassette with constant speed. This swirl flow is confined only under the cassette because two main streams from the backward and the fan filter unit on the top ceiling are sufficiently strong. Therefore, it can be said that possibility of the contamination by the particles originated from the friction is relatively low. It is also revealed that flow direction between glass plates is changed according to the speed of the cassette movement due to the shear force of glass plates.

A Study on Rain Gutters with Coanda Effect (코안다효과가 적용된 빗물받이에 관한 연구)

  • Jung, Yong Sin;Kim, Yong Sun;Shin, Hee Jae;Ko, Sang Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.58-64
    • /
    • 2020
  • Large-scale flooding due to extreme weather and typhoons causes heavy damage. This is especially true in urban areas where accumulated debris prevents the smooth drainage of rainwater in sewage facilities such as rain gutters installed near roads. In this study, to improve the drainage performance and effectively remove foreign substances by applying the dust screen used in rivers, the rain gutter with Coanda effect was simulated and compared with the experiment. The simulation was performed by setting the parameters to the fillet radius R1 and R2 at the top of the screen filter, the fillet radius R3 at the bottom of the screen filter, and the height H of the gap W from the bottom. W is the gap at the backside of screen filter which is applied to stimulate the Coanda effect. According to the simulation results, the highest drain performance was 87.99% derived from R1= 30mm, R2= 5mm, R3= 85mm, H= 75mm, and W= 2mm. The error rate of simulation results refer to the 4.89%~7.36% compared to the experimental results. In the future, by considering the slope according to the installation environment, the simulation results can be applied to the actual roadside to help prevent flood damage.

A CFD Analysis on DPF for the Removal of PM from the Emission of Diesel Vehicle (디젤차량 배기가스의 PM 제거에 관한 매연여과장치 전산해석)

  • Yeom, Gyuin;Han, Danbee;Nam, Seungha;Baek, Youngsoon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.301-306
    • /
    • 2018
  • Recently, due to the increase in the fine dust, regulations on PM generated from diesel cars are strengthened. There is a growing interest in diesel particulate filters (DPFs), a post-treatment device that removes exhaust gases from diesel vehicles. Therefore, one of the enhancements of the DPF efficiency is to reduce the pressure drop in the DPF, thereby increasing the efficiency of the filter and regeneration. In this study, the effect of cell density, channel shape, wall thickness, and inlet channel ratio of 5.66" SiC and Cordierite DPF on the pressure drop in DPF was investigated using ANSYS FLUENT simulator. As a result of the experiment, the pressure drop was smaller at 300 CPSI than 200 CPSI, and the anisotropy and O / S cell showed less than Isotropy by pressure drop of about 1,000 Pa. As the porosity increased by 10% the pressure drop was reduced by about 300 Pa and as the wall thickness increased by 0.05 mm, the pressure drop was increased by about 500 Pa.

Lophomonas blattarum-like organism in bronchoalveolar lavage from a pneumonia patient: current diagnostic scheme and polymerase chain reaction can lead to false-positive results

  • Moses Lee;Sang Mee Hwang;Jong Sun Park;Jae Hyeon Park;Jeong Su Park
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.2
    • /
    • pp.202-209
    • /
    • 2023
  • Lophomonas blattarum is an anaerobic protozoan living in the intestine of cockroaches and house dust mites, with ultramicroscopic characteristics such as the presence of a parabasal body, axial filament, and absence of mitochondria. More than 200 cases of Lophomonas infection of the respiratory tract have been reported worldwide. However, the current diagnosis of such infection depends only on light microscopic morphological findings from respiratory secretions. In this study, we attempted to provide more robust evidence of protozoal infection in an immunocompromised patient with atypical pneumonia, positive for Lophomonas-like protozoal cell forms. A direct search of bronchoalveolar lavage fluid via polymerase chain reaction (PCR), transmission electron microscopy (TEM), and metagenomic next-generation sequencing did not prove the presence of protozoal infection. PCR results were not validated with sufficient rigor, while de novo assembly and taxonomic classification results did not confirm the presence of an unidentified pathogen. The TEM results implied that such protozoal forms in light microscopy are actually non-detached ciliated epithelial cells. After ruling out infectious causes, the patient's final diagnosis was drug-induced pneumonitis. These findings underscore the lack of validation in the previously utilized diagnostic methods, and more evidence in the presence of L. blattarum is required to further prove its pathogenicity.

Exposure status of welding fumes for operators of overhead traveling crane in a shipyard (대형조선소 천장크레인 운전원의 용접흄 노출 실태)

  • Lee, Kyeongmin;Kim, Boowook;Kwak, Hyunseok;Ha, Hyunchul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.301-311
    • /
    • 2015
  • Objectives: Operators of overhead traveling crane in a ship assembly factory perform work to transmit large vessel blocks to an appropriate working process. Hazardous matters such as metal dusts, carbon monoxide, carbon dioxide, ozone, loud noise and fine particles are generated by variable working activities in the factory. The operators could be exposed to the hazardous matters during the work. In particular, welding fumes comprised of ultra fine particles and heavy metals is extremely hazardous for humans when exposing a pulmonary through respiratory pathway. Occupational lung diseases related to welding fumes are increasingly on an upward tendency. Therefore, the objective of this study is to assess properly unknown occupational exposure to the welding fumes among the operators. Methods: This study intended to clearly determine an equivalence check whether or not chemical constituents and composition of the dusts, which existed in the driver's cab, matched up with generally known welding fumes. Furthermore, computational fluid dynamics program(CFD) was used to identify a ventilation assessment in respect of a contamination distribution of welding fumes in the air. The operators were investigated to assess personal exposure levels of welding fumes and respirable particulate. Results: The dust in an operation room were the same constituents and composition as welding fumes. Welding fumes, which caused by the welding in a floor of the factory, arose with an ascending air current up to a roof and then stayed for a long time. They were considered to be exposed to the welding fumes in the operation room. The personal exposure levels of welding fumes and respirable particulate were 0.159(n=8, range=0.073-0.410) $mg/m^3$ and 0.138(n=8, range=0.087-0.178) $mg/m^3$, respectively. They were lower than a threshold limit value level($5mg/m^3$) of welding fumes. Conclusions: These findings indicate that an occupational exposure to welding fumes can exist among the operators. Consequently, we need to be keeping the operators under a constant assessment in the operator process of overhead traveling crane.

Study on the optimal design of floor exhaust system using computational fluid dynamics for subway platform (수치해석을 활용한 승강장 바닥배기 시스템 최적화 연구)

  • Namgung, Hyeong-Gyu;Park, Sechan;Kim, Minhae;Kim, Soo-Yeon;Kwon, Soon-Bark
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.443-449
    • /
    • 2017
  • The imbalance of air supply and the exhaust on subway platforms has led to the installation of platform screen doors in underground subway stations. This imbalance causes the accumulation of pollutants on the platform and loss of comfort due to the lack of ventilation. In this study, a floor exhaust system was optimized using computational fluid dynamics (CFD) and an optimization program. The optimized floor exhaust system was manufactured and tested experimentally to evaluate the particle collection efficiency. CFX 17.0 and HEEDS were used to analyze the flow field and optimize the principal dimensions of the exhaust system. As a result of the three-step optimization, the optimized floor exhaust system had a total height of 1.78 m, pressure drop of 430 Pa, and particle collection capability of 61%. A fine dust particle collection experiment was conducted using a floor exhaust system that was manufactured at full scale based on the optimized design. The experiment indicated about 65% particle collection efficiency. Therefore, the optimized design can be applied to subway platforms to draw in exhaust air and remove particulate matter at the same time.

Design of Remote Field Eddy Current Sensor for Water-Wall Tube Inspection using Simulation (시뮬레이션을 활용한 유동층보일러 수냉벽튜브 검사용 원격장 와전류 탐상 센서 설계)

  • Gil, Doo Song;Kwon, Chan Wool;Cho, Yong-Sang;Kim, Hak-Joon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Thermal power generation accounts for the highest percentage of domestic power generation, among which coal-fired boiler generation accounts for the highest percentage. Coal boilers generate harmful substances and fine dust during coal combustion and have a serious effect on air pollution. So, fluidized-bed boilers have been introduced as eco-friendly coal boilers. It uses a fluid medium which affect the combustion temperature of coal. Because of it fluidized-bed boilers emit less pollutants than original one. Water-wall tubes play an important role in this fluidized bed boiler. Due to the fluid medium, the wall damage is more severe than the existing boiler. However, there is no quantitative maintenance technique in Korea yet. Remote field eddy current testing is a non-destructive evaluation technique that is often used for inspection of inner and outer wall of tube. it can inspect with non-contact and high speed. However, it is an inspection that proceeds from inside the pipe, and the water-wall tube is not able to enter the interior. In this study, we designed and simulated an external remote field eddy current sensor suitable for water-wall tube of a fluidized - bed boiler using simulations. By obtaining a signal similar to the existing remote field eddy current test, the criteria for the external remote field eddy current sensor design can be presented.

The Effect of Quinolyl Piperazine Phosphate on the Silicotic Rats (Quinolyl Piperazine Phosphate가 흰쥐 규폐증에 미치는 영향)

  • Yim, Hyeon-Woo;Jung, Chang-Young;Oh, Sang-Yong;Kim, Kyung-Ah;Lim, Young;Yun, Im-Goung;Roh, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.112-122
    • /
    • 1993
  • Backgrounds : The goal of drug therapy in pneumoconiosis is to inhibit the progression of pulmonary fibrosis related to a toxic effect of the inhaled substance. Although there have been many studies on the therapy of pneumoconiosis, it is still elusive. Quinolyl piperazine phosphate (QP), a derivative of chloroquine, is less toxic, more effective, and longer action than chloroquine. This investigation was performed to examine the effect of the quinolyl piperazine phosphate in silicotic rats. Methods : The silica group was administered intratracheally by 40 mg free silica dust with 0.5 ml normal saline, and the QP group was orally administered QP 10 mg per week after free silica instillation. The animals in the silica group and the QP group were killed at the 1st, 3rd, 8th and 20th week after free silica instillation. We observed the total cell count in bronchoalveolar lavage fluid, luminol-dependent chemiluminescence by viable alveolar inflammatory cells, the dry weights and the amount of hydroxyproline in the left lung and the histopathologic examination in the right lung. Results : 1) The total number of cells of bronchoalveolar lavage fluid in the QP group tended to be decreased in comparison with the silical group. But, It was not significant. 2) Luminol-induced chemiluminescence by viable alveolar inflammatory cells in the QP group was similiar to that in the silical group. 3) The dry weights in the left lung at the 3th and 8th week in the QP group were significantly decreased compared to the silical group. 4) The total amount of hydroxyproline at the 3rd week of the QP group were significantly decreased compared to the silical group. In the silica group, the total amount of hydroxyproline was significantly increased at the 3rd week compared with the 1st group. But, in the QP group, it was significantly increased at the 8th week. 5) In tissue pathology, the infiltration of inflammatory cells around bronchiole, and the number and the size of silicotic nodule in the QP group were similar to the silica group. But, the extent of fibrosis is less than the silica group. Especially we observed progressive massive fibrosis which located in the periphery in 3 cases among the silica group, but couldn't observe in the QP group. Conclusions : QP doesn't significantly suppress the pulmonary fibrosis consequent to the intratracheal instillation of free silica dust, but delay the progression of fibrosis.

  • PDF