• 제목/요약/키워드: durable resistance

검색결과 156건 처리시간 0.022초

전위차 부식촉진법을 이용한 철근 콘크리트의 내부식성 예측을 위한 새로운 기법 연구 (A New Method on the Prediction of Corrosion Resistance of Reinforced Concrete Using Accelerated Potentiometric Corrosion Method)

  • 오병환;조윤구;차수원;정원기
    • 콘크리트학회지
    • /
    • 제8권5호
    • /
    • pp.201-209
    • /
    • 1996
  • 최근 여러 지역에서 혹독한 환경에 노출되는 대형구조물들의 건설이 증가하고 있다. 철근부식은 콘크리트 구조물의 내구성 및 내구연한에 큰 영향을 미칠 수 있다. 따라서 철근부식저항성을 증진시키기 위하여 내구성이 우수한 콘크리트의 개발이 필요하며 이러한 고내구성콘크리트의 부식저항성은 철근부식촉진실험으로 나타낼 수 있다. 따라서 본 논문의 목적은 철근의 부식량을 합리적이고 정확하게 측정하기 위한 새로운 기법을 고안하는데 있다. 본 논문에서 제시된 방법은 Faraday's Law 에 기초하고 있으며 철근부식은 전위차 부식실험방법으로 촉진시켰다. 본 연구에서 제시된 기법은 촉진부식시간에 따라 철근의 부식량을 결정할 수 있다. 따라서 고내구성 콘크리트를 개발하기 위한 플라이애쉬와 실리카 흄 등 혼화재가 미치는 철근부식 저항성연구를 정량적으로 수행할 수 있는 기법이 제시되었으며 이 방법은 앞으로 철근콘크리트 구조물의 부식저항성 예측에 효율적으로 활용될 수 있다.

고로슬래그의 분말도 및 순환골재 치환율에 따른 콘크리트의 강도 및 내구적 특성에 관한 연구 (A Study of the Strength and Durability Properties on Recycled Aggregate Concrete and Blain of Blast Furnace Slag)

  • 임명관;박무영;정상진
    • 한국건축시공학회지
    • /
    • 제7권4호
    • /
    • pp.101-108
    • /
    • 2007
  • Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properties such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical resistance. However, furnace slag powder is not self -hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcium hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate concrete using furnace slag and analyze its performance based on the results of an experiment, to provide materials on concrete using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.

Sulfate Resistance of Concrete using Ground Granulated Blast-furnace Slag for Recycling

  • Moon, Han-Young;Lee, Seung-Tae;Kim, Hong-Sam
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.508-513
    • /
    • 2001
  • Recently, ground granulated blast-furnace slag (GGBFS) has been increasingly used as additive for concrete. Many researchers reported that concrete using GGBFS had a better resistance under severe environments, such as marine or sulfate-rich soils, than Portland type cement concrete. The aim, therefore, of this study is to evaluate on the effectiveness of concrete using GGBFS when the concrete exposes to sulfate-rich environment. The detailed items for experiments show 2 series consisted of sulfate immersion test with mortar and sulfate diffusion test with concrete. The sulfate immersion test was performed for 400 days and contained reduction of compressive strength, length change and XRD analysis. For sulfate diffusion test, sulfate ions diffusivity was calculated on tile consideration of electrochemical theory by the diffusion cell test. As the results of this study, it was found that the concrete using GGBFS as additive was superior to portland type cement concrete. Consequently, the use of concrete with GGBFS for recycling may expect the durable and economical benefits.

  • PDF

Mechanical, durability and microstructure properties of concrete containing natural zeolite

  • Nas, Memduh;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.449-459
    • /
    • 2018
  • Concrete is one of the most widely used construction materials in the world. Producing economical and durable concrete is possible by employing pozzolanic materials. The aim of this study is to underline the possibility of the utilization of natural zeolite in producing concrete and investigate its effects basically on the strength and durability of concrete. In the production of concrete mixes, Portland cement was replaced by the natural zeolite at ratios of 0%, 10%, 15%, and 20% by weight. Concretes were produced with total binder contents of $300kg/m^3$ and $400kg/m^3$, but with a constant water to cement ratio of 0.60. In addition to compressive and flexural strength measurements, freeze-thaw and high temperature resistance measurements, rapid chloride permeability, and capillary water absorption tests were performed on the concrete mixes. Compared to the rest mixes, concrete mixes containing 10% zeolite yielded in with the highest compressive and flexural strengths. The rapid chloride permeability and the capillary measurements were decreased as the natural zeolite replacement was increased. Freeze-thaw resistance also improved significantly as the replacement ratio of zeolite was increased. Under the effect of elevated temperature, natural zeolite incorporated concretes with lower binder content yielded higher compressive strength. However, the compressive strengths of concretes with higher binder content after elevated temperature effect were found to be lower than the reference concrete.

내설성 향상을 위한 지붕형 조립식 파이프하우스의 개발 (Development of a Gable-roofed Prefabricated Pipe-house for Improvement of Snow Endurance)

  • 양인규;남상운
    • 한국농공학회논문집
    • /
    • 제51권3호
    • /
    • pp.71-78
    • /
    • 2009
  • Pipe section of bending part at the arch type pipe-house showed an ellipse with oblateness of 0.076 on the average. Flexural rigidity of bending part decreased by average 6.3% than that of an original round shape section. The deflection of arch type pipe-house measured by model experiments showed much bigger than the result of structural analysis. In case of arch type pipe-house, we supposed that the decrease of flexural rigidity for the bending part of pipes had an effect on deflection of roof under the working load. This effect should be considered in the structural analysis. Bending resistance of gable type pipe-house used a prefabricated connector which developed in this study showed about $1.5{\sim}1.8$ times stronger than that of the existing arch type or gable type processed bending. Therefore, we supposed that the gable-roofed prefabricated pipe-house is safer than arch type or bent gable type in case of heavy snowfall. According to house scales and section properties of steel pipe in use, safe snow depths and rafter intervals were presented for design of gable-roofed prefabricated pipe-house. Their standards were established in the range of the durable models recommended by RDA, and the comparative examinations were conducted by means of structural analysis. It was evaluated that the developed greenhouse model had a high applicability in the field.

고성능AE감수제를 사용한 콘크리트의 철근부식 저항성 (Corrosion Inhibition Properties of Steel bars in Reinforced Concrete Using Superplasticizer with Air Entrained Agent)

  • 이문환;정미경;오세출;배규웅;서치호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.149-160
    • /
    • 2000
  • As systematic methodologies are required for the evaluation on the durability of reinforced concrete structure, it is necessary to study and examine every factor which deteriorates the durability of structures. This paper aims to define factors affecting rebar corrosion and to establish a basis for a prediction of serviceability, regarding a state of harmful corrosion as a state when crack begins on the surface of concrete. The study results are followings; The corrosive current has changed by types of mixture, and this property enables the evaluations of corrosion resistance by mixture and concrete cover. The specimen using AE superplasticizer has better corrosion-resistance properties than non-AE specimen, as well those having low W/C and high unit cement weight. The procedure for calculation of durable year in this study is able to use as an indicator to establish mixture factors such as unit cement weight, W/C, amount of admixture, etc.

  • PDF

Electrochemical Performance and Cr Tolerance in a La1-xBaxCo0.9Fe0.1O3-δ (x = 0.3, 0.4 and 0.5) Cathode for Solid Oxide Fuel Cells

  • Choe, Yeong-Ju;Hwang, Hae-Jin
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.308-314
    • /
    • 2015
  • The electrochemical performance and Cr poisoning behavior of $La_{1-x}Ba_xCo_{0.9}Fe_{0.1}O_{3-{\delta}}$ (LBCF, x = 0.3, 0.4, 0.5) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathodes were investigated for solid oxide fuel cells (SOFCs). The polarization resistance of the LBCF/GDC/LBCF symmetrical cell was found to decrease with increasing Ba content (x value). This phenomenon might be associated with the high oxygen vacancy concentration in the LBCF sample, with x = 0.5. In addition, there was no chromium poisoning in the LBCF cathode. On the other hand, the polarization resistance of the LSCF cathode was found to significantly increase after exposure to gaseous chromium species; it appears that this result stemmed from the formation of $SrCrO_4$ phase. Therefore, it can be expected that LBCF can be a durable potential cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFC).

콘크리트의 소수성 표면처리를 통한 철강 보강재의 내식성 향상 (Enhancement of Corrosion Resistance of Steel Reinforcement in Concrete by Hydrophobic Surface Treatments)

  • 조현빈;신동민;서은혜;이욱진;이정훈
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.300-305
    • /
    • 2020
  • Corrosion of reinforcement steel rebar is a serious problem in a wide range of concrete application for buildings and infrastructures. Hydrophobizing surface treatments, such as self-assembled monolayer coating, edible oil-impregnation and silicone oil-impregnation were applied to solidified concrete. The hydrophobizing of concrete significantly reduces an absorption and transportation of water toward a steel rebar in concrete, so that the corrosion resistance of the steel rebar. In particular, the silicone oil-impregnation not only forms the hydrophobic monolayer on the concrete but also fills the inter-connected pores of concrete, thus the corrosion of steel rebar is significantly inhibited compared to the self-assembled monolayer coating and edible oil-impregnation. Therefore, the silicone oil-impregnation can be a promising candidate for preventing corrosion of steel rebar in concrete for durable performance and safety.

Development of Durable Reliability Assessment Methods for Heavy Duty Coatings

  • Kim, Seung-Jin;Jung, Ho;Yang, In-Mo;Tanaka, Takeyuki
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.155-163
    • /
    • 2005
  • Heavy duty coating are required to have minimum durable period of 15 years under average usage environment because these paints are coated with purpose of anti-corrosion, antifouling, plastering etc. Onto steel structures constructed upon land and sea and other ferrous structures of electric power generation plants, electricity transmission towers, large structures of various plants, etc. Therefore we tried to estimate heavy duty coating longevity through reliability evaluation method and used combined cyclic anti-conrrosion test method composed of drying, moisturizing and salt spray as for accelerated life test to estimate longevity. Accelerated life test hours to heavy duty coating of first grade (with longevity not less than 15 years) specification may be obtained from troubleless test hours $t_n=\frac{B_p}{n^{1/\beta}}\left[\frac{1n(1-CL)}{1n(1-p)} \right]^{1/\beta}=19.671$ (yr) where shape parameter $\beta=1.1$, confidence level CL=80 %, warranty life $B_{10}=15$ yr and sampling size n=10 (2 sets). Because acceleration factor {AF} found by accelerated test is 41.7, accelerated life test hours required may be represented about 4,132 hr so that if this amount of hours is converted to number of cycles(6 hr/cycle) of complex cycle corrosion resistance test then the amount is tantamount about 690 cycles. That means if there does not occur trouble failure (with defect factor sum not more than 20) during when there is performed 690 cycles of combined cyclic anti-corrosion test to heavy duty coating specimen then it signifies that there can be warranted longevity $B_{10}$ of 15 yr under condition of confidence level CL=80 %.

Formaldehyde Free Cross-linking Agents Based on Maleic Anhydride Copolymers

  • Yoon, Kee-Jong;Woo, Jong-Hyung;Seo, Young-Sam
    • Fibers and Polymers
    • /
    • 제4권4호
    • /
    • pp.182-187
    • /
    • 2003
  • Low molecular weight copolymers of maleic anhydride and vinyl acetate were prepared to develop formaldehyde free cross-linking agents. Since lower molecular weight is favorable for efficient penetration of the finishing agent into the cotton fibers in the padding process, the concentration of the initiator, chain transfer agent and the monomer ratios were varied to obtain copolymers of low molecular weights. The prepared polymers were characterized by GPC, $^1{H-NMR}$, FTIR, DSC and TGA. Copolymers of molecular weights of 2 000 to 10 000 were obtained and it was found that the most efficient method of controlling the molecular weight was by varying the monomer ratios. Poly(maleic anhydride-co-vinyl acetate) did not dissolve in water, but the maleic anhydride residue hydrolyzed within a few minutes to form poly(maleic acid-co-vinyl acetate) and dissolved in water. However, the maleic acid units undergo dehydration to form anhydride groups on heating above ${160}^{\circ}C$ to some extent even in the absence of catalysts. The possibility of using the copolymers as durable press finishing agent for cotton fabric was investigated. Lower molecular weight poly(maleic anhydride-co-vinyl acetate) copolymers were more efficient in introducing crease resistance, which appears to be due to the more efficient penetration of the cross-linking agent into cotton fabrics. The wrinkle recovery angles of cotton fabrics treated with poly(maleic anhydride-co-vinyl acetate) copolymers were slightly lower than those treated with DMDHEU and were higher when higher curing temperatures or higher concentrations of copolymer were used, and when catalyst, $NaH_2$$PO_2$, was added. The strength retention of the poly(maleic anhydride-co-vinyl acetate) treated cotton fabrics was excellent.