• Title/Summary/Keyword: durability safety

Search Result 661, Processing Time 0.039 seconds

Effects of Fume silica on synthesis of New Austria Tunnel Method Resin for new material in space aviation (우주항공의 신소재를 위한 New Austria Tunnel Method 수지합성에 대한 Fume silica의 영향)

  • Kim, Kijun;Lee, Jooho;Park, Taesul;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.595-601
    • /
    • 2014
  • The microstructures of NATM were examined by SEM, FT-IR spectra, tensile properties, mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly industries have led to the development of solvent-free formulations that can be cured. We had synthesized NATM(New Austria Tunnel Method) resin having the ability to protect stainless steel against corrosion. Comparing with general NATM resin and coatings, this resin that synthesized with polyurethane and epoxy was highly stronger in intensity and longer durability. Hybrid resin was composed of polyols, MDI, epoxy, silicone surfactant, catalyst and crosslink agent, and fillers. Moreover, fillers such as fume silica not only accelerated the curing rate but also improved the physical property as thermal barriers. The rigid segments of synthetic resin in mechanical properties were due to fume silica and the increase the mole% of [NCO/OH] for corrosion protection. In conclusion, the hybrid resin microstructure with crosslink agent and fume silica are good material for thermosetting coating of metal substrates such as stainless steel.

Evaluation on the Mechanical Performance of Concrete Using Entanglement Polyamide Fiber (다발형 폴리아미드섬유 보강 콘크리트의 역학적 성능평가)

  • Jeon, Joong Kyu;Kim, Gyu Yong;Jeon, Chan Ki;Lee, Soo Choul
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • Steel fiber is high stiffness and large weight. So, Pumping hose to rupture of the safety management is difficult. Steel fiber caused by corrosion of the deterioration of durability and high-rebound losses are needed for the improvements. Thus, the revised regulations in 2009 by a steel fiber to reinforce other materials is possible. Variety of fiber reinforcement material for concrete review of applicability is needed. Steel fiber strength than the other fibers is large and by the geometry of the fibers are attached to improve performance. However, compared to steel fiber organic fibers and low modulus of elasticity and tensile strength of fiber and agglomeration occurs in the concrete to be used as reinforcement material is difficult. In this regard, the present study as a single object in the micro-fiber bouquet sharp entanglement through make muck attach surface area, distributed fibers from surfactant of the surface enhanced polyamide fibers, steel fiber and PP fiber reinforced concrete by comparing the scene to provide a basis for the use.

A Study on Development of ECS for Severly Handicaped (중증 장애인을 위한 생활환경 제어장치개발에 관한 연구)

  • 임동철;이행세;홍석교;이일영
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.427-434
    • /
    • 2003
  • In this paper, we present a speech-based Environmental Control System(ECS) and its application. In the concrete, an ECS using the speech recognition and an portable wheelchair lift control system with the speech synthesis are developed through the simulation and the embodiment. The developed system apply to quadriplegic man and we evaluate the result of physical effect and of mental effect. Speech recognition system is constructed by real time modules using HMM model. For the clinical application of the device, we investigate the result applied to 54-years old quadriplegic man during a week through the questionnaires of Beck Depression Inventory and of Activity Pattern Indicator. Also the motor drive control system of potable wheelchair lift is implemented and the mechanical durability is tested by structural analysis. Speech recognition rate results in over 95% through the experiment. The result of the questionnaires shows higher satisfaction and lower nursing loads. In addition, the depression tendency of the subject were decreased. The potable wheelchair lift shows good fatigue life-cycle as the material supporting the upper wheelchair and shows the centroid mobility of safety. In this paper we present an example of ECS which consists of real-time speech recognition system and potable wheelchair lift. Also the experiments shows needs of the ECS for korean environments. This study will be the base of a commercial use.

Preparatory Research prior to the Development of Consumer-Tailored 3D Printing Service Platform (소비자 맞춤형 삼차원 프린팅 서비스 플랫폼 개발을 위한 탐색)

  • Lee, Guk-Hee;Choi, Hye-Kyong
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.3-16
    • /
    • 2017
  • With the development and proliferation of three-dimensional(3D) printers, consumers in modern society can now print products of what they want three-dimensionally at home. However, consumers themselves would have to produce digital design maps that are compatible with 3D printers and to set up the optimum printing quality and temperature, as well as to pay for maintenance and repair of 3D printers and to respond to any possible lawsuits related to intellectual property right about designs in order to make possible consumer-tailored manufacturing through 3D printing. However, in reality, since it is very difficult for consumers to respond to these issues, it is necessary to develop services that perform 3D printing on behalf of consumers in the desired direction. Motivated by this objective, this study investigated user experiences on Shapeways(www.shapeways.com), which is a global online 3D printing product and sales companies, from many viewpoints in order to obtain insight into 3D printing services and modes which were preferred by consumers. The study result showed that quantitative evaluations on usability, search process, price adequacy, re-visit intention, diversity of design, and satisfaction of design was scored low overall. Furthermore, this study acquired insight about consumer-tailored 3D printing services through constructive suggestions on multi-language support, openness of manufacturing process, simultaneous operation of online and offline sites, design-oriented consumer-tailored manufacturing service, services that ensure delivery safety and product durability, and surface finishing services. This study is expected to provide a wide range of opinions not only on 3D printing service platform development but also on related industry and research.

Heat Exchange Performance of Improved Heat Recovery System (개량형 열회수 시스템의 열교환 성능)

  • Suh, Won-Myung;Yoon, Yong-Cheol;Kwon, Jin-Keun
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • This study was carried out to improve the performance of pre-developed heat recovery devices attached to exhaust-gas flue connected to combustion chamber of greenhouse heating system. Four different units were compared in the aspect of heat recovery performance; A-, B-, and C-types are exactly the same with the old ones reported in previous studies. D-type newly developed in this experiment is mainly different with the old ones in its heat exchange area and tube thickness. But airflow direction(U-turn) and pipe arrangement are similar with previous three types. The results are summarized as follows; 1. System performances in the aspect of heat recovery efficiency were estimated as 42.2% for A-type, 40.6% for B-type, 54.4% for C-type, and 69.2% for D-type. 2. There was not significant improvement of heat recovering efficiency between two different airflow directions inside the heat exchange system. But considering current technical conditions, straight air flow pattern has more advantage than hair-pin How pattern (U-turn f1ow). 3. The main factors influencing on heat recovery efficiency were presumably verified to be the total area of heat exchange surface, the thickness of ail-flow pipes, and the convective heat transfer coefficient influenced by airflow velocity under the conditions of allowable pipe durability and safety. 4. Desirable blower capacity for each type of heat recovery units were significantly different to each other. Therefore, the optimum airflow capacity should be determined by considering in economic aspect of electricity required together with the optimum heat recovery performance of given heat recovery systems.

A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물 침투 저항성에 관한 연구)

  • Song, Ha-Won;Kwon, Seung-Jun;Lee, Suk-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • Chloride ion inside concrete destroys the so-called passive film surrounding reinforcing bars inside concrete so that the so-called salt attack accelerates corrosion which is the most critical factor for durability as well as structural safety of reinforced concrete structures. Recently, as a solution of the salt attack, the ground granulated blast-furnace slag(GGBFS) have been used as binder or blended cement more extensively. In this paper, characteristics of chloride ion diffusion for the GGBFS concrete, which is known to possess better resistance to damage due to the chloride ion penetration than ordinary portland cement(OPC) concrete possesses, are analyzed and a chloride ion diffusion model for the GGBFS concrete is proposed by modifying an existing diffusion model for the OPC concrete. The proposed model is verified by comparing diffusion analysis results using the model accelerated chloride penetration test results for concrete specimens as well as field test results for an RC bridge pier. Then, an optimal resistance condition to chloride penetration for the GGBFS concrete is obtained according to degrees of fineness and replacement ratios of the GGBFS concrete. The result shows that the GGBFS concrete has better resistance to chloride ion penetration than OPC concrete has and the resistance is more affected by the replacement ratio than the degree of fineness of the GGBFS.

A Study on the Variation of Strength and Color According to Heated Temperatures of Fire­Damaged Concrete (화재피해 콘크리트의 수열온도에 따른 강도 및 색상 변화 연구)

  • Choi, Kwang-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • In the safety diagnosis of fire-damaged concrete structures, it is difficult to evaluate the strength and changes in materials due to high temperatures with the existing durability analysis method. In particular, the compressive strength of specimen with different damage levels by thickness is used as a representative value for reducing the compressive strength of the structural member. In this study, a heating experiment was performed with only top face heating and fully heating conditions at 400℃ to 800℃. After heating, splitting tensile test and color analysis were performed to sliced specimens with a thickness of 20mm accompanied by the compressive test of a fully heated specimen. As a result of the experiment, the compressive strength reduction rate calculated from the splitting tensile strength of every sliced specimen appeared to be within 10% of the fully heated specimen on aver age, and the hue value analysis showed consistent color values were observed by red at 400℃-600℃ and gray at 700℃ or above. It follows that the techniques proposed in this study are reasonably assessable to estimate heated temperature and residual compressive strength and damage depth of concrete.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

Mechanical Properties of Porous Concrete For Pavement Using Recycled Aggregate and Polymer (재생골재와 폴리머를 이용한 포장용 포러스 콘크리트의 역학적 특성)

  • Park Seung-Bum;Yoon Eui-Sik;Seo Dae-Seuk;Lee Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.595-602
    • /
    • 2005
  • The purpose of this study is to utilize recycled concrete aggregates as permeable pavement materials. This study evaluates mechanical properties and durability of porous concrete depending on mixing rates of recycled aggregates and polyme. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of recycled aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of polymer increased. As polymer was mixed $20\%$, national regulation of permeable concrete for pavement($8\%$ and 0.01cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of recycled aggregates increased but they increased a lot as mixing rate of polymer increased. Even when recycled aggregates were mixed $75\%\;with\;10\%$ polymer mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, regarding sliding resistance, BPN increased as mixing rate of recycled aggregates increased. But BPN decreased as polymer was mixed. Compared to crushed stone aggregates, abrasion resistance and freeze-thaw resistance decreased as mixing rate of recycled aggregates Increased. When polymer was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, $10\%$ mixture of polymer improved abrasion resistance and freeze-thaw resistance about $8.6\%$ and 3.8times respectively.

Relationship between Half Cell Potential and Corrosion Amount Considering Saturated Cover depth and W/C ratios in Cement Mortar (습윤상태의 피복두께와 물-시멘트비를 고려한 반전위와 철근 부식량의 상관성)

  • Ryu, Hwa-Sung;Park, Jae-Sung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.19-26
    • /
    • 2017
  • Concrete is a construction material with porous media and corroded steel inside affects negatively to durability and structural safety. This study aims a derivation of quantitative relationship between measured HCP (Half Cell Potential) and corrosion amount considering cover depth and W/C (water to cement) ratio. For the work, cement mortar specimens with 3 different W/C ratios and 4 different cover depths are prepared, HCPs are measured with 3 different corrosion level. HCP measurement significantly increases in the saturated condition and linear relationship is observed between corrosion level and acceleration period. With increasing corrosion level and W/C ratio, and decreasing cover depth, HCP measurement increases. Considering total corrosion level and HCP measurements, relatively low COV(Coefficient of Variation) of 0.67 is evaluated through multi-linear regression analysis, however higher COVs over 0.90 can be obtained considering level of HCP measurement. In the room condition, corrosion level can be evaluated through measured HCP in the given conditions of cover depth, W/C ratio. diameter of steel inside.