• Title/Summary/Keyword: durability damage

Search Result 533, Processing Time 0.028 seconds

Pore Structure Changes in Hardened Cement Paste Exposed to Elevated Temperature (고온 환경에 노출된 시멘트 경화체의 공극 구조 변화)

  • Kang, Seung-Min;Na, Seung-Hyun;Kim, Kyung-Nam;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.48-55
    • /
    • 2015
  • Hardened cement-based materials exposed to the high temperatures of a fire are known to experience change in the pore structure as well as microstructural changes that affect their mechanical properties and tend to reduce their durability. In this experimental investigation, hardened Portland cement pastes were exposed to elevated temperatures of 200, 400, 600, 800, and $1000^{\circ}C$ for 60 minutes, and the resulting damage was studied by thermogravimetry (TG), mercury intrusion porosimetry (MIP) and density measurements. These results revealed that the residual compressive strength is increased at temperatures greater than $400^{\circ}C$ due to a small pore size of 3 nm and/or rehydration of the dehydrated cement paste. However, a loss of the residual strength occurs at temperatures exceeding 500 and $600^{\circ}C$. This can be attributed to the decomposition of hydrates such as portlandite and to an increase in the total porosity.

Study on the Development of Maintenance Process in Long-Life Housing - Focus on the Development of Maintenance Process for the Manager - (장수명공동주택의 유지관리업무프로세스 구축에 관한 연구 - 관리자를 위한 유지관리업무프로세스를 중심으로 -)

  • Ji, Jang-Hun;Kim, Soo-Am;Yoon, Sang-Cho
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.344-349
    • /
    • 2009
  • To be Low Carbon and Green Growth, it is necessary that Long-Life Housing based on Green Technology is supplied. The main concern at the moment is developing Sustainable Housing relative to Life-Cycle or Life-Style of the residents, and the resident of Remodeling or Redevelopment. This study is aim to be Development of Maintenance Process in order to make steady dwelling when supplying Long-Life Housing that separates Support(Skeleton) and Infill different from the existing Short-Life Housing, and has durability, alterability, available remodeling, easy maintenance. Long-Life Housing should consider the maintenance about movement and variableness. In contrast, the maintenance of the existing Housing is regular maintenance, change and repair by damage. As well as Long-Life Housing should be demanded proper Development of Maintenance Process because of difference of Housing in concept, design and Construction. Therefore, this study looks into problems when applying Development of Maintenance Process in Long-Life Housing, and shows Development of Maintenance Process about the efficient Long-Life Housing for the manager.

  • PDF

An experimental study on the Performance Evaluation of High Performance Polyurea Resins (고성능 폴리우레아 수지의 기본적 물리/화학적 성능평가에 관한 실험적 연구)

  • Kim, Yun-Ho;Choi, Eun-Kyu;Seo, Hyun Jae;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.43-45
    • /
    • 2011
  • As technologies evolve, building large concrete structures ever built, but due to lack of maintenance after completion of concrete corrosion, leaks, and preparedness from the problem that is an urgent need. In particular, water-resistant variety of concrete structures. How the concept applies to the most important public drinking water purification and drinking water that is draining the production and storage, and distribution as the structure cause damage to the structure when the contaminated water is supplied to each home that can harm the health of citizens is the cause. Therefore, the correct choice of materials, and thorough a lot of investment in construction and maintenance should have. In this study, unlike conventional water-proof materials, methods, and in other reactions easily than conventional poly-urea resins have good physical performance and chemical resistance, high performance polyurea resin performance review of the physical infrastructure of the country for the longevity of would like to make long-term durability.

  • PDF

Generating Characteristics of Cymbal Type Piezoelectric Transducer according to Change of Cymbal Cap (심벌캡 변화에 따른 심벌타입 압전 트랜스듀서의 발전특성)

  • Park, Choong-Hyo;Kim, Jong-Wook;Chong, Hyon-Ho;Jeong, Seong-Su;Kim, Myung-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.318-318
    • /
    • 2010
  • In this paper, we studied generating characteristic of cymbal type piezoelectric transducer according to change of cymbal cap. The transducer is composed of circular piezoelectric ceramic and two elastic bodies which are shaped as cymbal. Two elastic bodies are attached to upper and bottom of the ceramic. Principle of the transducer is to generate expanded displacement because vertical stress is transformed into horizontal stress by slope angle of elastic bodies. The transducer also has advantage of high durability by the angle of elastic bodies. In this study, each parameter was chosen, and then generating characteristics were analyzed by FEM program. The parameters were slope angle of cymbal cap (theta), cap height (h) and cap inner diameter(d). The model that had generating characteristic Of high voltage was chosen by results of the analysis. Besides, maximum vertical displacements according to change of vertical stress were analyzed by structural analysis in order to find out relation between the maximum vertical stress which can prevent from ceramic damage and conditions of each cap.

  • PDF

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

Prediction of Long Term Performance and Creep of Laminated Natural Rubber Bearings(NRB) (적층 천연고무 면진장치의 장기성능과 크리프에 대한 예측)

  • Hwang, Kee Tae;Seo, Dae Won;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.117-125
    • /
    • 2013
  • Seismic isolation has been considered and utilized in various industries as a way to prevent huge damage on to structures by large earthquakes in various industries. The laminated Laminated rubber bearings is are most frequently used in seismic isolation systems. The structural Structural safety could not be assured unless the performance of the rubber bearing is not guaranteed for the life time of the structure under the consideration that the bearing is a critical structural member to sustain vertical loads in the seismically isolated structure. However, there are few studies on the deterioration problems of rubber bearings during their service life. The long term performance of the rubber bearings was not considered in past designs of seismically isolated structures. This study evaluates the long term performance and creep characteristics of laminated natural rubber bearings that are used in seismically isolated buildings. For the this study, a set of accelerated thermal aging tests and creep tests are were performed on real specimens. The experimental results show that the natural rubber bearings would have a stable change rate of change for durability under severe environmental conditions for a long time.

A Behavior Analysis of HSR concrete slab track under Variety of Rail pad stiffness on fatigue effect (피로효과를 고려한 레일패드 스프링계수 변화에 따른 콘크리트 슬래브 궤도의 거동분석)

  • Eom, Mac;Choi, Jung-Youl;Chun, Dae-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.340-350
    • /
    • 2007
  • The major objective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect(hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete slab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

The Effect of Gaps in Concrete Bearing Surface of Direct Fixation Track on Vehicle and Track Interaction (직결궤도 체결구 하부에 발생한 단차가 차량/궤도 상호작용에 미치는 영향)

  • Yang, Sin-Chu;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.50-57
    • /
    • 2010
  • Various installation faults may lie in fasteners in the construction of a direct-fixation track by the top-down method. At an extreme, they may cause excessive interaction between the train and track, compromise the running safety of the train, and cause damage to the track components. Therefore, the faults need to be kept within the allowable level through an investigation of their effects on the interactions between the train and track. In this study, the vertical dynamic stiffness of fasteners in installation faults was measured based on the dynamic stiffness test by means of an experimental apparatus that was devised to feasibly reproduce gap faults. This study proposes an effective analytical model for a train-track interaction system in which most elements, except the nonlinear wheel-rail contact and some components that behave bi-linearly, exhibit linear behavior. To investigate the effect of the behavior of fasteners in gap faults in a direct-fixation track on the vehicle and track, vehicle-track interaction analyses were carried out, targeting key review parameters such as the wheel load reduction factor, vertical rail displacement, rail bending stress, and mean stress of the elastomer. From the results, it was noted that the gap faults in the concrete bearing surface of a direct-fixation track need to be limited for the sake of the long-term durability of the elastomer than for the running safety of the train or the structural safety of the track.

  • PDF

Effects of Sinusoidal Vibration Fatigue on Compression Strength of Corrugated Fiberboard Container for Packaging of Fruits

  • Jung, Hyun-Mo;Kim, Jong-Kyoung;Kim, Man-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • The compression strength of corrugated fiberboard containers for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about 30~40% owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard containers for packaging the fruits and vegetables under simulated transportation environment. After the packaging freight was vibrated at various experimental conditions, the compression test for the packaging was performed. The compression strength of corrugated fiberboard containers decreased with loading weight and vibration time. The multiple nonlinear regression equation ($R^2$ = 0.9198) for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibration time.

  • PDF

A Study on Curing Methods for Concrete Pavement on Early Strength Development in Cool Weather Condition (저온 환경에서 콘크리트 포장의 강도발현 촉진을 위한 양생방법 연구)

  • Ryu, SungWoo;Kim, JinHwan;Hong, SeungHo;Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.11-18
    • /
    • 2017
  • PURPOSES : This study investigates the effect on concrete pavement accordance with the curing methods in cool weather and supports the best method in the field. METHODS : Two field tests evaluated the curing methods of concrete pavement in cool weather. Firstly, five curing methods were tested, including normal curing compound, black curing compound, bubble sheet, curing mat, and curing mat covered with vinyl. Concrete maturity was compared from temperature data. Secondly, normal curing compound and curing mat with vinyl, which showed the best performance, were compared in terms of maturity and join condition index. RESULTS:From the field tests, it is an evident that curing mat with vinyl accelerated the concrete strength. Therefore, it is possible to conduct saw-cut works in cool weather, which minimizes damage on concrete at joint. CONCLUSIONS : For concrete pavement in cool weather, using curing mat with vinyl as the curing method could overcome the strength delay. Therefore, strength and durability problems on concrete at joint due to cool weather would be fewer in the future.