• Title/Summary/Keyword: durability damage

Search Result 533, Processing Time 0.025 seconds

Development of Vehicle Classification Algorithm using Non-Contact Treadle Sensor for Toll Collect System (통행료징수시스템을 위한 무접점 답판 방식의 차종분류 알고리즘 개발)

  • Seo, Yeon-Gon;Lew, Chang-Guk;Lee, Bae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1237-1244
    • /
    • 2016
  • Vehicle classification system in domestic tollgates is usually to use treadle sensor for calculating wheel width and tread of the vehicle. Due to the impact that occurs when the wheels of the vehicle contact, treadle sensor requires high durability. Recently, KHC(Korea Highway Corporation) began operating high-speed lane for cargo truck. High-speed cargo truck generate more impact the design criteria of previous treadle. Therefore, an increase in the maintenance and management costs of the treadle damage is concerned. In this paper, we propose an algorithm to classify vehicles using non-contact treadle sensors for improving durability from physical impacts. This was based on the KHC's classification criteria and showed a classification accuracy of 99.5 % in one experiment with 1892 vehicles through Changwon tollgate in 1020 local road. Therefore, it shows that vehicle classification system using non-contact treadle sensor could be applied to domestic toll tollgates, effectively.

Effect of Freezing and Thawing on the Flexural Behavior of Reinforced Concrete Beams damaged by cracks (균열발생으로 손상을 입은 철근콘크리트 보의 동결융해 사이클에 따른 휨 거동 특성)

  • Jang, Yong-Heon;Yun, Hyun-Do;Seo, Soo-Yeon;Choi, Ki-Bong;Kim, Yun-Su;Kim, Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.277-280
    • /
    • 2008
  • Reinforced concrete structures have an excellent durability under a good construction and continuous maintenance. But reinforced concrete construction is influenced by atmospheric phenomena and it is creating a deterioration. One of the deterioration cause on concrete is a freezing and thawing action. Freezing and thawing leads to the reduction in concrete durability by the cracking or surface spalling. If we are carried out freezing and thawing, deterioration of reinforced concrete construction will be reduction. Therefore, this study was performed to investigate the flexural behavior of reinforced concrete beams exposed to freezing and thawing cycles. Thee presence of damage and cycles were considered as variablees in this study.

  • PDF

An Experimental Study on Durability of Mortar and Concrete using Shrinkage reducing typed Superplasticizer (수축저감형 혼화제를 이용한 모르타르 및 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Woo, Hyung-Min;Park, Hee-Gon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.561-569
    • /
    • 2016
  • Concrete is cheap, easy to deal with, and the quality is satisfactory. Also, it is one of the easiest materials to get because chemical composition of cement is similar to chemical composition of surface. On the other hand, it is so vulnerable to transform because of weak binding capacity and low binding energy that it produces cracks. Cracks decline durability, usability, safety of structures and damage exterior. In order to decline drying shrinkage crack, this study used shrinkage reducing typed Superplasticizer, which is combination of and water-reducing agent for convenience, different with existing study using AE agent, water-reducing agent, shrinkage reducing agent,. Considering SRS field application possibility, this study planned to mix concrete and mortar generally used in ready-mixed concrete company and did basic experiment depending on a change of SRS content ratio and admixture. Based on the experiment result. It is judged that SRS admixture 2% is proper ratio when Given the intensity and length change. Also mass combination will conduct follow-up studies.

Calculation of the Surface Chloride and Estimation for the Soundness of Embedded Rebar by Using Colorimetric Distinction Method (비색판별법을 이용한 콘크리트의 표면염화물량 산정 및 매립철근의 건전도 평가)

  • Lee, Mun-Hwan;Lee, Jin-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.794-801
    • /
    • 2003
  • As it is important to measure the degree of the deterioration and predict service life caused by chloride in concrete structure the methods of measuring chloride in the concrete is raised important problems. This study is to set a new standard for using of the colorimetric method through grasping the character of the colorimetric distinction method, and measuring the chloride content at the place discolored. Also, to predict chloride content around embeded bar and time reaching limit chloride concentration through measuring the chloride content of concrete surface by colorimetric distinction method and this study presents the new concept of concrete degradation and diagnosis of the durability by salt damage. According the results, it is possible to use colorimetric distinction method as simplified measurement to measure the fixed quantity of the chloride concentration. What is more, it would make calculation of concrete surface chloride had a wide fluctuation at the general environment extended. Also, it would be make estimating durability of reinforced concrete structures applied to the basic data.

A Study on the Purchasing and Wearing Conditions of Sports Climbing Wear (스포츠 클라이밍 의류 구매 및 착용실태)

  • Moon, Kyung-Bo;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.449-456
    • /
    • 2018
  • This study conducted a survey of members at sports climbing centers on the purchasing and wearing conditions of sports climbing wear and design preferences. 140 participants were in their 20's and 30's, and many of them engaged in sports climbing activities over 20 times a month. They put emphasis on the motion adaptability, durability, price and functional material when purchasing a climbing wear. However, only 23% of them used sports climbing wear. The reasons for wearing sports climbing wears were suitability for physical activity, comfort, and design. On the other hand, the reasons for not purchasing them were expensive prices and lack of designs. They experienced inconveniences at sleeves and waist in shirts. In case of pants, participants experienced inconveniences with the knee and thigh when they climbing. Concerning the damage of shirts, the majority experienced the elbow part was worn out, and the knee part was either worn out or torn at pants. Design preference results showed participants preferred loose-fit short-sleeved shirts that could cover half of the hip. In case of pants, they preferred basic-fit long trousers and basic hems with no functional characteristic. 3 sports climbing instructors answered that climbing wears should put emphasis on deodorization and antimicrobial effects as well as durability and suitability for physical activity. They also pointed out limitations in price and design and presented opinions about creating various sizes for different body parts by taking into account the growth of muscles.

An Experimental Study on Relation between Chloride Diffusivity and Microstructural Characteristics for GGBS Concrete (슬래그 미분말 혼합 콘크리트의 공극구조와 염화물 확산계수와의 관계에 대한 실험적 연구)

  • Kim, Tae-Sang;Jung, Sang-Hwa;Choi, Young-Cheol;Song, Ha-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.639-647
    • /
    • 2009
  • In order to evaluate the durability of reinforced concrete structures under chloride attack from sea water and frost damage, it is important to analyze both the microstructural characteristics of concrete and its diffusion resistance of concrete against chloride ingress. In this study, a relation between micro-pore structures of concrete obtained by the Mercury Intrusion Porosimetry and accelerated chloride diffusivity as well as long term chloride diffusivity were studied for ground granulated blast furnace slag(GGBS) concrete. Different water-cement ratio of 40, 45, 50% and different unit cement concrete of 300, 350, 400 or 450 kg/$m^3$ of the GGBS concrete along with OPC concrete were used and freeze and thawing, and the change in diffusivity and microstructure were observed for both GGBS concrete and damaged GGBS concrete due to rapid freezing and thawing.

Performance Evaluation of Bridge Deck Materials based on Ordinary Portland Cement Concrete (보통 포틀랜드 콘크리트 기반 교면포장 재료 성능 평가)

  • Nam, Jeong-Hee;Jeon, Seong Il;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.129-137
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop bridge deck concrete materials based on ordinary Portland cement concrete, and to evaluate the applicability of the developed materials through material properties tests. METHODS : For field implementation, raw material (cement, fine aggregate, and coarse aggregate) properties, fresh concrete properties (slump and air content), strength (compressive, flexural and bond strength) gain, and durability (freeze-thaw resistance, scaling resistance, and rapid chloride penetrating resistance) performance were evaluated in the laboratory. RESULTS : For the selected binder content of $410kg/m^3$, W/B = 0.42, and S/a = 0.48, the following material performance results were obtained. Considering the capacity of the deck finisher, a minimum slump of 150 mm was required. At least 6 % of air content was obtained to resist freeze-thaw damage. In terms of strength, 51.28 MPa of compressive strength, 7.41 MPa of flexural strength, and 2.56 MPa of bond strength at 28 days after construction were obtained. A total of 94.9 % of the relative dynamic modulus of elasticity after 300 cycles of freeze-thaw resistance testing and $0.0056kg/m^2$ of weight loss in a scaling resistance test were measured. However, in a chloride ion penetration resistance test, the result of 3,356 Coulomb, which exceeds the threshold value of the standard specification (1000 Coulomb at 56 days) was observed. CONCLUSIONS : Instead of using high-performance modified bridge deck materials such as latex or silica fume, we developed an optimum mix design based on ordinary Portland cement concrete. A test construction was carried out at ramp bridge B (bridge length = 111 m) in Gim Jai City. Immediately after the concrete was poured, the curing compound was applied, and then wet mat curing was applied for 28 days. Considering the fact that cracks did not occur during the monitoring period, the applicability of the developed material is considered to be high.

Experimental Method for Durability Evaluation of a Chisel Mounted on a Composite Working Implement

  • Han, Jeongwoo;Moon, Sanggon;Lee, Geunho;Kang, Daesik
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.251-257
    • /
    • 2017
  • Purpose: A chisel mounted on working implement, such as agricultural machinery used in irregular farming conditions, is subjected to highly variable fatigue loading during work. To ensure the safety of the chisel on a working implement for the duration of its service life, fatigue testing must be performed with the proper fatigue test load conditions. In this study, working loads for a chisel were developed by reconstructing loads from strain gage data collected during field tests and used to conduct fatigue tests on the chisel component. Methods: FE analysis with nCode software was utilized to select the proper quantity and locations of strain gages for load measurements. A fatigue test was performed to experimentally verify the fatigue strength of the chisel and to evaluate the validity of the load history developed with the load reconstruction technique. Results: A strain history for the chisel was obtained from data collected during field tests. The data was filtered for the 14-16 km/h speed range, connected, and merged. The chisel load history was developed using the load reconstruction technique. The resulting load history was expressed as a load spectrum using the rain-flow counting method. Conclusions: A fatigue test was conducted on a chisel under a constant load condition with an equivalent load amplitude and number of cycles, as calculated by Miner's Rule for linear damage accumulation. During the fatigue test, there were no cracks at any position. It is concluded that the fatigue test method proposed in this study can be utilized successfully as a durability evaluation method for the chisel.

Freeze-Thaw Durability and Carbonation of Concrete Surface Protecting materials (콘크리트 표면보호재 종류에 따른 동결융해 및 중성화 내구특성)

  • Lee, Beung-Duk;Kim, Hyun-Joong;Kwon, Young-Rak;Kim, Sye-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.593-596
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of concrete structure in the highway. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. In this study, Use of deicing chemicals has been and will continue to be a major part of highway freeze-thaw durability and carbonation of concrete surface protecting materials

  • PDF

Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes

  • Al-Osta, Mohammed A.;Baig, Mirza G.;Al-Malack, Muhammad H.;Al-Amoudi, Omar S. Baghabra
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.123-143
    • /
    • 2016
  • Use of heavy fuel fly ash (HFFA) (diesel and cracked fuel) for power generation in Saudi Arabia has generated and accumulated large quantities of HFFA as a byproduct. In this research, HFFA is studied with the emphasis on the utilization of this waste material in concrete blocks and asphalt concrete mixes. Two types of mixes, one with low and other with high cement content, were studied for concrete blocks. Different mixes having varying percentages of HFFA (0% to 25%), as cement/sand replacement or as an additive, were studied. The performance of concrete blocks is evaluated in terms of compressive strength, water absorption, durability and environmental concerns. The results showed that blocks cannot be cast if more than 15% HFFA is used; also there is a marginal reduction in the strength of all the mixes before and after being exposed to the sulfate solution for a period of ten months. HFFA is studied in asphalt concrete mixes in two ways, as an asphalt modifier (3&5%) and as a filler (50%) replacement, the results showed an improvement in stiffness and fatigue life of mixes. However, the stability and indirect tensile strength loss were found to be high as compared to the control mix due to moisture damage, indicating a need of using antistripping agents. On environmental concerns, it was found that most of the concerned elements are within acceptable limits also it is observed that lower concentration of barium is leached out with the higher HFFA concentrations, which indicates that HFFA may work as an adsorbent for this leaching element.