• Title/Summary/Keyword: durability characteristics

Search Result 1,216, Processing Time 0.025 seconds

Application of In-Situ Mixing Hydration Accelerator on Polymer Modified Concrete for Bonded Concrete Overlay (접착식 콘크리트 덧씌우기를 위한 초속경화 첨가재 현장 혼합 폴리머 개질 콘크리트의 적용성 연구)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.85-95
    • /
    • 2015
  • PURPOSES : Recently, bonded concrete overlay has been used as an alternative solution in concrete pavement rehabilitation since its material properties are similar to those of the existing concrete pavements. Deteriorated concrete pavements need rapid rehabilitation in order to prevent traffic jams on Korean expressways. Moreover, speedy and effective repair methods are required. Therefore, the use of bonded concrete overlay with ultra-rapid hardening cement has increased in an effort to reopen promptly the expressways in Korea. However, mobile mixer is required for ultra-rapid hardening cement concrete mixing in the construction site. The use of mobile mixer causes various disadvantages aforementioned such as limitation of the construction supply, open-air storage of mixing materials, increase in construction cost, and etc. In this study, therefore, hydration accelerator in-situ mixing on polymer modified concrete produced in concrete plant is attempted in order to avoid the disadvantages of existing bonded concrete overlay method using ultra-rapid hardening cement. METHODS : Bonded concrete overlay materials using ultra-rapid hardening cement should be meet all the requirements including structural characteristics, compatibility, durability for field application. Therefore, This study aimed to evaluate the application of hydration accelerator in-situ mixing on polymer modified concrete by evaluating structural characteristics, compatibility, durability and economic efficiency for bonded concrete overlay. RESULTS : Test results of structural characteristics showed that the compressive, flexural strength and bond strength were exceed 21MPa, 3.15MPa and 1.4MPa, respectively, which are the target strengths of four hours age for the purpose of prompt traffic reopening. In addition, tests of compatibility, such as drying shrinkage, coefficient of thermal expansion and modulus of elasticity, and durability (chloride ions penetration resistance, freezing-thawing resistance, scaling resistance, abrasion resistance and crack resistance), showed that the hydration accelerator in-situ mixing on polymer modified concrete were satisfied the required criteria. CONCLUSIONS : It was known that the hydration accelerator in-situ mixing on polymer modified concrete overlay method was applicable for bonded concrete overlay and was a good alternative method to substitute the existing bonded concrete overlay method since structural characteristics, compatibility, durability were satisfied the criteria and its economic efficiency was excellent compare to the existing bonded concrete overlay methods.

Evaluation of Corrosion Resistance using Electro-chemical Methods for the High-Durability Concrete exposed to Marine Condition (해양환경에 노출된 고내구성 콘크리트의 전기화학적기법을 이용한 부식저항성 평가)

  • Yang, Eun-Ik;Kim, Myung-Yu;Lee, Dong-Gun;Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • The durability of marine concrete structures is severely degraded by corrosion due to seawater attack and diffusion of chloride in concrete. The deduction of durability causes high repair cost for maintenance of marine concrete structure. So, the applicability of high-durable materials is investigated to improve the durability in marine concrete structures. For these, the characteristics of corrosion prevention of marine concrete structures mixed with the mineral admixtures(SF, FA and BFS), the modified steel(stainless and coating steel), and corrosion inhibitors are evaluated using electro-chemical methods. As a results of this study, it is quantified for the effect of promotion of durability by high-durability materials in marine concrete structures.

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

Near surface characteristics of concrete: prediction of freeze/thaw resistance

  • Chan, Sammy Yin Nin;Dhir, Ravindra K.;Hewlett, Peter C.;Chang, Da Yong
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.403-412
    • /
    • 1994
  • The durability of concrete is related to the permeation characteristics of its near surface. An attempt was made to use the permeation characteristics namely, absorptivity, permeability and diffusivity, to predict the freeze/thaw resistance of concrete. Test results indicate that in general, there was a trend that freeze/thaw resistance of concrete was enhanced with improved absorptivity and diffusivity whilst the freeze/thaw resistance of normal concrete was found to have the best relationship with its intrinsic permeability. The latter method is therefore proposed to be adopted to predict freeze/thaw resistance of normal concrete. Since Figg air test is an inexpensive and simple test method that measures indirectly the intrinsic permeability of concrete, it is further proposed that it could be used as a quality control tool to assess, non-destructively, the freeze/thaw durability potential of in-situ concrete.

Characterization of Textures for Low Noise Concrete Pavement

  • Moon, Han-Young;Ha, Sang-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.461-464
    • /
    • 2003
  • Portland Cement Concrete (PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, data collected to date generally show PCC pavements to create more noise than asphaltic surfaces. As the results of research, surfaces of exposed aggregate, tining and grooving concrete pavements appear to provide better noise quality characteristics as well as good frictional characteristics and durability. In this paper, several methods of texturing were considered to reduce tire/pavement noise. As the results of this paper, PCC pavements with special texturing have superior surface friction as well as noise reductions when compared to conventional PCC pavement. Especially, Exposed Aggregate Concrete (EAC) surface appears to provide better noise quality characteristics. Conclusively, if overall noise and safety are considered simultaneously, EAC pavement that provides satisfactory friction as well as better noise reductions is suggested.

  • PDF

A Study on the Synthesis and Mechanical Characteristics of NATM Resin (HATM 수지의 합성 및 기계적 특성에 관한 연구)

  • Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.355-361
    • /
    • 2005
  • The physical characteristics of polyurethane were examined by SEM, FT-IR tensile strength and mole % [NCO/OH]. Growing concerns in the environment-friendly architecture and public works have led to the development of solvent-free formulations that can be cured and foamed in air. Compared with general packing materials, this resin is much stronger in intensity and much longer in durability. Polyurethane foam resins were mainly composed of polyol, MDI, silicone surfactant, fillers, catalyst and blowing agent. The rigid foam of polyurethane in mechanical characteristics were due to chain extender and the increase of mole % [NCO/OH]. The change in the microstructure of polyurethane should be taken into account when considering the process of construction and durability through the polyurethane polymer resin in lots of industries.

Reliability Evaluation of Air Spring for Railway Vehicle (철도차량용 공기스프링의 신뢰성 평가)

  • 김완두;우창수;최경진
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.807-819
    • /
    • 2002
  • The air spring is used in secondary suspension system for railway vehicle to reduce and absorb the vibration and noise. In this paper, the characteristics and durability test was conducted in laboratory by using servo hydraulic fatigue testing system to evaluate the reliability. And to guarantee the adaptation of this air spring, the ride comfort and air pressure variation were measured in train test. The experimental results show that the characteristics and durability of domestic development productions are obtained the good results and the stiffness of the air spring which had become 6 year over increased. Also, the dynamic characteristics of domestic and existing product agree well the results obtained.

  • PDF

A Study of Cosmetic Sustainability Evaluation of Powder Base Make-up Products (파우더 베이스 메이크업 제품의 지속성 평가 방법 연구)

  • Lee, Sang Gil;Kim, Ki Jung;Kim, Young Ho;Pyo, Hyeong Bae;Lee, Dong Kyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.209-218
    • /
    • 2015
  • Once powder base makeup products are applied to the skin, the products are formed a film and attached on the skin for 8 to 12 hours. The makeup film is deformed by secretions such as sweat and sebum secreted from the skin. Thus, durability of the film is an important quality factor in the makeup and its evaluation is also important. In this study, characteristics of the semi-finished powder products such as water absorption, oil absorption, water repellent and oil repellent were evaluated in a number of ways. Also, simple methods, which are not affected by evaluation conditions such as a difference between sweat and sebum secretion, temperature and humidity, were examined to predict the durability of the products. We measured water absorption, oil absorption, water repellent and oil-repellent properties of semifinished product by tablet, capillary and dipping method and then compared with the data of color difference meter and ROBO skin analyzer. Results showed that the durability of powder base makeup products was associated with more oil absorption and water-repellent characteristics than water absorption and oil-repellent. Oil absorption characteristics by tablet and capillary method and water-repellent characteristics by dipping method provides a simple and quick method to precdict the durability of the makeup products.

A Study on the Characteristics of High-Quality Concrete Containing Silica Fume (실리카흄을 혼입한 고품질 콘크리트의 특성에 관한 연구)

  • 배수호;윤상대;박광수;신의균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.88-93
    • /
    • 1995
  • The purpose of this study is to investigate the mechanical properties and durability of high-quality concrete containing silica fume. For this purpose, the optimum quantity of silica fume were obtained for high-quality concrete, and the mechanical properties and durability of it are analyzed according to amount of combined material.

  • PDF

Characteristics of Strength and Durability of Hwangto-Concrete according to its Mixing Condition (황토 콘크리트의 배합조건에 따른 강도성상 및 내구성)

  • Hwang, Hey Zoo;Roh, Tae Hak;Kim, Jin Il
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.55-60
    • /
    • 2008
  • The purpose of this study is to increase the use of Hwangto and examine the strength according to what it is compounded with. Hwangto-concrete containing Hwanto without cement nor organic chemical products were compared to the traditional cement concrete through some durability experiments. We expect to gain more knowledge on the potentials of Hwangto-concrete as an architectural source. 1) As Hwangto binder amount rises, the value of slump increases too. The reason is that the increase of the quantity of cement causes the increase of the amount of material and the decrease of the amount of aggregate. 2) When the mixed component into Hwangto-concrete remains at 2%, the compress strength is generally dispersed high along the per unit fission, in case the amount of which is at $400(g/m^3)$. The highest compress strength is 39MPa. It means that it can be applied to common structures and we need to conduct a basic property test to ensure the strength and fluidness. 3) Hwangto-concrete is expected to be highly used in the ocean structure and chemical industry because it has better resistance to sulfuric acid and to hydrochloric acid than the cement-concrete has. The result of this study is as follows. It is expected that Hwangto-concrete will be widely applied and further research on its durability and tests for its basic substantial characteristics based on future component added to it.