• Title/Summary/Keyword: durability analysis

Search Result 1,665, Processing Time 0.034 seconds

Steady-state Thermal Analysis of 5 kW IPMSM Using Thermal Equivalent Circuit (열등가회로를 이용한 5 kW 급 영구자석 동기전동기의 정상상태 열 특성 해석)

  • Kim, Tae Hyun;Yoo, Young Bum;Na, Jong Seung;Ryu, Kyongtae;Moon, Yoon Jae;Lee, Jae Heon;Lee, Ju;Park, Chan Bae;Moon, Seung Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.951-956
    • /
    • 2014
  • Steady-state thermal analysis was performed on a thermal equivalent circuit to determine the heat generation during operation of an interior permanent magnet synchronous motor (IPMSM). New machines must be compact and light and produce high torque density under extreme environmental conditions. Thermal analysis of an IPMSM is particularly important because excessive heat generated from the core and magnet reduces the IPMSM's output and has adverse effects on the durability. Therefore, steady-state thermal analysis of an IPMSM was performed for changes in the design variables using a thermal equivalent circuit. The changed variables were the axis length and thickness of the housing. The results of this method were compared with those of the finite element method to verify the accuracy and reliability.

Structural Stability Analysis Study for Existing Subway Tunnels Using a 3D Stress-Pore Pressure Coupled Finite Element Modelling of NATM Tunneling (NATM 터널굴착시 응력-간극수압 연계 3차원 유한요소모델링을 통한 기존 지하철터널의 구조적 안정성 해석연구)

  • Kong, Byung-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.192-203
    • /
    • 2009
  • In the new Seoul-Busan high speed railroad construction specially in area of city center passage the roadbed establishment is recommended the staibility for the existing subway tunnel segments of Busan subway 1st and 2nd lines regarding the appearance condition, a quality condition and the durability of the objective facility, and it evaluates the numerical analysis using MIDAS/GTS which leads the stability of the objective facility and investigatesd tunnels. Fundamental issues in tunneling under high groundwater table are discussed and the effect of groundwater on tunnel excavation was examined using a 3D stress-pore pressure coupled Finite-Element Method. Based on the results the interaction mechanism between the tunnelling and groundwater is identified. In the both of 1st and 2nd Line the maximum sinkage, unequal sinkage and the lining stress from numerical analysis are within permission and the damage degree is appearing to be disregarded. But it enforces necessary Pre-grouting in order to minimize an actual tunnel face conduct and when the tunnel is excavated it is also necessary to minimize the outflow possibility.

Analysis of Long-term Stability of Direct Methanol Fuel Cell and Investigation of the Methods to Improve its Performance (직접메탄올 연료전지의 장기운전 특성 분석 및 성능향상 연구)

  • Lee, Hyun-Sook;Bae, Byung-Chan;Lee, Jae-Young;Im, Tae-Hun;Ha, Heung-Yong;Hong, Seong-Ahn
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • Direct methanol fuel cell (DMFC) is considered as a candidate for portable power sources, that could overcome the disadvantages of lithium battery. But in order to attain commercial viability the long term stability of the DMFC should be achieved. Understanding the long-term behavior of membrane-electrode assembly (MEA) is a prerequisite to this purpose and the optimization of the MEA is also needed. In this study we have investigated the changes in performance and electrochemical properties of the MEA during extended operation and the effects of heat treatment of MEA on the long-term performance. The MEAs have been treated in an autoclave with saturated water vapor at 120$^{\circ}C$, vacuum oven at 140$^{\circ}C$ and boiling in organic solvents. The autoclaved MEA was found to be have the best long term performance. The on-off operation mode also increased the performance probably due to effective removal of products from the electrodes. Physical and electrochemical analyses using a scanning electron microscope, impedance analyser and half-cell technique have been done to characterize the MEAs.

Development of a Method to Reduce Damages by Pipe Failures (상수관 파괴에 의한 피해 경감기법의 개발)

  • Jun, Hwan-Don;Kim, Seok-Hyeon;Park, Moo-Jong;Kim, Joong-Hoon;Lee, Hwan-Goo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.31-36
    • /
    • 2008
  • A water distribution system should be constructed reasonably to supply water for the customer with proper quality and pressure as demands at nodes fluctuate with time. Also it should be reliable to minimize undesirable effects on the customer when various accidents happen such as pipe failures. A new method is presented here to reduce damages by pipe failures. For the work, two methods, namely, the method for estimating practical extent of damage by pipe failures and for estimating water distribution reliability, are adopted to analyze a water distribution system and to explore the damage reduction by pipe failures. As the results from the analysis of the model, the damage can be reduced effectively by increasing durability of each pipe in minimum cutsets according to the order of priority. The suggested method was applied to the Cherry-Hill network to verify its applicability.

Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications (소형로봇용 500W급 연료전지 스택무게 최적화 설계)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

The Reliability Design Method According to the Experimental Study of Components and Materials of Railway Rail Fastening System (철도용 레일체결장치 부품.소재의 실험적 연구를 통한 신뢰성 설계 방안)

  • Kim, Hyo-San;Park, Joon-Hyung;Kim, Myung-Ryule;Park, Kwang-Hwa;Lee, Dal-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2090-2100
    • /
    • 2011
  • Railway rail fastening system is the critical device which gives big influences to not only the vehicle driving stability and the orbit's structural stability against the impulsive load, but also the noise vibration and the ride comfort. As a part of the low-carbon green growth, the importance of the railroad industry is getting highlights on its excellent energy-efficiency and eco-friendliness. However, so far the Korea's domestic rail fastening system technology is not so good and the technical reliance to abroad is very heavy. In this study, we conducted comparative analysis on the rail fastening system with new and used one of the same type. And those systems are imported by Seoul Metro and are being used by it. With this basis, we developed the components and the materials and then, established the durability assessment methods appropriate to the Korean domestic circumstances. And through the reliability qualification test on the 7 parts of the rail fastening system, we've improved the reliability and guaranteed the 15 years of service lifetime. ($B_{10}Life15$) Establishment and standardization of Reliability Standard on the parts of the rail fastening system such as anti-vibration pads, guide-plate, screw spike made it possible to perform the internationally fair assessment. And it is thought that we can satisfy the manufactures' and consumers' needs of cost-cutting and qualification security by shortening of assessment period on rail fastening system.

  • PDF

Mesoscale simulation of chloride diffusion in concrete considering the binding capacity and concentration dependence

  • Wang, Licheng;Ueda, Tamon
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.125-142
    • /
    • 2011
  • In the present paper, a numerical simulation method based on mesoscopic composite structure of concrete, the truss network model, is developed to evaluate the diffusivity of concrete in order to account for the microstructure of concrete, the binding effect of chloride ions and the chloride concentration dependence. In the model, concrete is described as a three-phase composite, consisting of mortar, coarse aggregates and the interfacial transition zones (ITZs) between them. The advantage of the current model is that it can easily represent the movement of mass (e.g. water or chloride ions) through ITZs or the potential cracks within concrete. An analytical method to estimate the chloride diffusivity of mortar and ITZ, which are both treated as homogenious materials in the model, is introduced in terms of water-to-cement ratio (w/c) and sand volume fraction. Using the newly developed approaches, the effect of cracking of concrete on chloride diffusion is reflected by means of the similar process as that in the test. The results of calculation give close match with experimental observations. Furthermore, with consideration of the binding capacity of chloride ions to cement paste and the concentration dependence for diffusivity, the one-dimensional nonlinear diffusion equation is established, as well as its finite difference form in terms of the truss network model. A series of numerical analysises performed on the model find that the chloride diffusion is substantially influenced by the binding capacity and concentration dependence, which is same as that revealed in some experimental investigations. This indicates the necessity to take into account the binding capacity and chloride concentration dependence in the durability analysis and service life prediction of concrete structures.

Thermal Stress Analysis of the Heat Generation for Mass Concrete Considering Creep Effect (크리이프를 고려한 매스콘크리트의 수화열에 대한 온도응력 해석)

  • Kim, Jin Keun;Lee, Jong Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.771-781
    • /
    • 1994
  • The heat generation of cement causes the internal temperature rise and volume change at early age, particulary in massive concrete structures. As the results of the temperature rise and restraint conditions, the thermal stress may induce cracks in concrete. Therefore, the prediction of the thermal stress is very important in the design and construction in order to control the cracks developed in mass concrete. In case of young concrete, creep effect by the temperature load is larger than that of old concrete. Thus, the effect of creep must be considered for checking the cracks, serviceability, durability and leakage. This paper is concentrated on the development of a finite element program which is capable of simulating the temperature history and the thermal stress considering creep and the modified elastic modulus due to inner temperature change and maturity. The analytical results in the inner parts highest important to control cracks are in good agreement with experimental data. Therefore this study may provide available method to control the cracks.

  • PDF

RF Collimator Design having Multi-Dielectric Structure using the Phase Field Design Method (페이즈필드 설계법을 이용한 다중 유전체 구조의 RF 콜리메이터 설계)

  • Go, Joohyun;Seong, Hong Kyoung;Kim, Hanmin;Park, Jinwoo;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • In this study, a collimator composed of multi-dielectric structures is designed using the phase field design method, a kind of topology optimization methods. It is also purposed to improve the mechanical-structural performance of a collimator by replacing previously used air regions with another dielectric material. Polypropylene and paraffin are selected as the dielectric materials for the design process taking manufacturability into account. The design objective is formulated by integrating the intensity of the electromagnetic field in the pre-determined target area to realize the collimating performance. The model for accurate numerical analysis was derived from the final result obtained from the design process through the simple cut-off method and it shows the improved performance of 105% compared with the free space wave propagation. For the designed model, the possibility of reverse transformation, the mechanical durability evaluation under the compression load, and the electromagnetic performance in the X-band range were also evaluated.

An Aging Measurement Scheme for Flash Memory Using LDPC Decoding Information

  • Kang, Taegeun;Yi, Hyunbean
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • Wear-leveling techniques and Error Correction Codes (ECCs) are essential for the improvement of the reliability and durability of flash memories. Low-Density Parity-Check (LDPC) codes have higher error correction capabilities than conventional ECCs and have been applied to various flash memory-based storage devices. Conventional wear-leveling schemes using only the number of Program/Erase (P/E) cycles are not enough to reflect the actual aging differences of flash memory components. This paper introduces an actual aging measurement scheme for flash memory wear-leveling using LDPC decoding information. Our analysis, using error-rates obtained from an flash memory module, shows that LDPC decoding information can represent the aging degree of each block. We also show the effectiveness of the wear-leveling based on the proposed scheme through wear-leveling simulation experiments.