• Title/Summary/Keyword: durability analysis

Search Result 1,665, Processing Time 0.03 seconds

Study on Structural Strength and Application of Composite Material on Microplastic Collecting Device (휴대형 미세플라스틱 수거 장비 경량화 부품 설계 및 구조강도 평가)

  • Myeong-Kyu, Kim;Hyoung-Seock, Seo;Hui-Seung, Park;Sang-Ho, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.447-455
    • /
    • 2022
  • Currently, the problem of pollution of the marine environment by microplastics is emerging seriously internationally. In this study, to develop a lightweight portable microplastic collection device, the types and number of microplastics in 21 coastal areas nationwide in Korea were investigated. And CFRP (Carbon Fiber Reinforced Plastic), GFRP (Glass Fiber Reinforced Plastic), ABS (Acrylonitrile Butadiene Styrene copolymer) and aluminum were applied for design and analysis of microplastic collection device to have the durability, corrosion resistance and lightweight. As a result of sample collection and classification from the shore, it was confirmed that microplastics were distributed the most in Hamdeok beach, and the polystyrene was found to be mainly distributed microplastics. Particle information through coastal field survey and CFD (Computational Fluid Dynamics) analysis were used to analyze the flow rate and distribution of particles such as sand and impurities, which were applied to the structural analysis of the cyclone device using the finite element method. As a result of structural analysis considering the particle impact inside the cyclone device, the structural safety was examined as remarkable in the order of CFRP, GFRP, aluminum, and ABS. In the view of weight reduction, CFRP could be reduced in weight by 53%, GFRP by 47%, and ABS by 61% compared to aluminum for the cyclone device.

The Effect of Rainfall on the Stability of Mudstone Slope in Consideration of Collapse Record (이암 절취사면의 붕괴이력을 고려한 강우침투에 따른 안정성 분석)

  • Jeon, Byeong-Chu;Lee, Su-Gon;Kim, Young-Muk;Chung, Sung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • At the mudstone slope located on the roadside of the Seokri area in Donghae-myeon, Pohang, Gyeongsangbuk-do, this study was performed to analyze the effects of rainfall on the stability of slope through seepage analysis according to the precipitation type of the mudstone slope, referring to the actual case of slope failure. For this, precise geological survey, geophysical exploration and drilling survey for the slope where the failure occurred were performed and followed by analysis of detailed soil layer. For the section where failure surface located, the durability reduction of rocks was measured through slaking/swelling tests and the permeability was measured through in-situ permeability tests for each soil layer. In addition, the change of strength parameter and process of instability were analyzed by back analysis, using Talren 97 and Slope/W programs, in the slope. By applying different precipitation conditions to the geographical conditions of the slope that had actual failure records, the slope stability was analyzed by seepage analysis according to duration of rainfall and rise of groundwater level resulting from the flow of rainfall caused by development of geological structures and the slope surface condition.

A Study on the Change and Factors of Landscape Facilities Shown in a Landscape Architecture Magazine (조경전문잡지를 통해 본 조경시설물의 변화 및 요인 연구)

  • Yu, Joo-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.5
    • /
    • pp.111-120
    • /
    • 2015
  • In this study, the general structure of the landscape architecture industry was considered through analysis of advertisements in the landscape architecture magazine, 'Environment & Landscape Architecture', and the transition process and factors of landscape facilities were analyzed. Based on this result, the direction of future landscape facilities and basic data were suggested. When analyzing the advertisements that have been published in 'Environment & Landscape Architecture' for 30 years, outdoor facilities were depicted at a frequency of 1,853 times and among them, rest facilities and convenience facilities were depicted 1,457 times and 378 times, respectively. The reason why outdoor facilities have a far higher advertisement frequency than other landscape facilities is they were highly influenced by the house construction-related government policy, which resulted from the expansion of the rest facility industry along with regional expansion to public design. Moreover, it was found that wood and steel were mainly used to make pergolas and benches, which are rest facilities, and polycarbonate, with high economic efficiency and durability, was used the most as a roofing material for pergolas. This study attempts to explore the tendency of landscape facilities and the changes in the detail of their types by analyzing the stream of landscape facilities diachronically, based on the advertisements published in a representative magazine of landscape architecture.

Development of Autonomous Bio-Mimetic Ornamental Aquarium Fish Robotic (생체 모방형의 아쿠아리움 관상어 로봇 개발)

  • Shin, Kyoo Jae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.5
    • /
    • pp.219-224
    • /
    • 2015
  • In this paper, the designed fish robots DOMI ver1.0 is researched and development for aquarium underwater robot. The presented fish robot consists of the head, 1'st stage body, 2nd stage body and tail, which is connected two point driving joints. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. Also, Lighthill was applied to the kinematics analysis of robot fish swimming algorithms, we are applied to the approximate method of the streamer model that utilizes techniques mimic the biological fish. The swimming robot has two operating mode such as manual and autonomous operation modes. In manual mode the fish robot is operated to using the RF transceiver, and in autonomous mode the robot is controlled by microprocessor board that is consist PSD sensor for the object recognition and avoidance. In order to the submerged and emerged, the robot has the bladder device in a head portion. The robot gravity center weight is transferred to a one-axis sliding and it is possible to the submerged and emerged of DOMI robot by the breath unit. It was verified by the performance test of this design robot DOMI ver1.0. It was confirmed that excellent performance, such as driving force, durability and water resistance through the underwater field test.

Finite Element Analysis of RF Coupler in Normal-Low Temperature (상온-저온 RF 커플러 유한요소해석)

  • Kim, Hansol;Lee, Hak Yong;Park, Chan;Lee, Jaeyeol;Lim, Dong Yeal;Yoo, Jeonghoon;Hyun, Myung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1101-1107
    • /
    • 2014
  • A heavy ion accelerator is a device that accelerates heavy ions in the radio frequency (RF) range. The electric field that flows into the RF cavity continuously accelerates heavy ions in accordance with the phase of the input electromagnetic wave. For the purpose, it is necessary to design a coupler shape that can stably transfer the RF wave into the cavity. The RF coupler in a heavy ion accelerator has a large temperature difference between the input port and output port, which radiates the RF waves. It is necessary to consider the heat deflection on the RF coupler that occurs as a result of the rapid temperature gradient from an ultra-low temperature about 0 K to a room temperature about 300 K. The purpose of this study was to improve the system performance through an analysis of the intensity of the output electric field and temperature distribution considering various shapes of the RF coupler, along with an analysis of the durability considering the heat deflection and heat loss.

Analysis and Risk Prediction of Electrical Accidents Due to Climate Change (기후환경 변화에 따른 전기재해 위험도 분석)

  • Kim, Wan-Seok;Kim, Young-Hun;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.603-610
    • /
    • 2018
  • The development of industry and the increase in the use of fossil fuels have accelerated the process of global warming and climate change, resulting in more frequent and intense natural disasters than ever before. Since electricity facilities are often installed outdoors, they are heavily influenced by natural disasters and the number of related accidents is increasing. In this paper, we analyzed the statistical status of domestic electrical fires, electric shock accidents, and electrical equipment accidents and hence analyzed the risk associated with climate change. Through the analysis of the electrical accidental data in connection with the various regional (metropolitan) climatic conditions (temperature, humidity), the risk rating and charts for each region and each equipment were produced. Based on this analysis, a basic electric risk prediction model is presented and a method of displaying an electric hazard prediction map for each region and each type of electric facilities through a website or smart phone app was developed using the proposed analysis data. In addition, efforts should be made to increase the durability of the electrical equipment and improve the resistance standards to prevent future disasters.

Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems (유체 구조 상호작용 문제를 가진 다공성 촉매 담체에서 실동경계조건의 역문제 해석을 위한 최적화 기법)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1161-1170
    • /
    • 2011
  • This paper presents a solution to the inverse problem for the service boundary conditions of thermal-flow and structure analysis in a catalyst substrate. The exhaust-gas purification efficiency of a catalyst substrate is influenced by the shape parameter, catalyst ingredients and so on and is estimated by the thermal flow uniformity. The formulations of the inverse problem of obtaining the thermal-flow parameters (inlet temperature, velocity, heat of reaction, convective heat-transfer coefficient) and the direct problem of estimating from a given outlet temperature distribution are described. An experiment was designed and the response-surface optimization technique was used to solve the proposed inverse problem. The temperature distribution of the catalyst substrate was obtained by thermal-flow analysis for the predicted thermal-flow parameters. The thermal stress and durability assessments for the catalyst substrate were performed on the basis of this temperature distribution. The efficiency and accuracy of the inverse approach have been demonstrated through the achievement of good agreement between the thermal-flow response surface model and the results of experimental vehicle tests.

An Experimental Study on the Application of LIBS for the Diagnosis of Concrete Deterioration (콘크리트 열화 진단의 LIBS 적용을 위한 실험적 연구)

  • Woo, Sang-Kyun;Chu, In-Yeop;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.140-146
    • /
    • 2017
  • It is laser induced breakdown spectroscopy(LIBS) that enables qualitative and quantitative analysis of the elements contained in unknown specimen by comparing the wavelength characteristics of each element obtained from the spectral analysis of the standard specimen with the wavelength analysis results from unknown specimens. In this study, the applicability of LIBS to the analysis of major deterioration factors affecting concrete durability was experimentally analyzed. That is, the possibility of applying LIBS to the diagnosis of concrete deterioration by studying the quantitative detection of harmful deteriorating factors on chloride, sulfate and carbonated mortar specimens using LIBS was studied. As a result of LIBS test for each chloride and sulfate specimen, the LIBS spectral wavelength intensity of chlorine and sulfur ions increased linearly with increasing concentration. Carbon ion LIBS spectral wave intensities of carbonated specimens increased nonlinearly over the duration of carbonation exposure. From the above results, it can be partially confirmed that LIBS can be applied to the diagnosis of concrete deterioration. In case of concrete carbonation, it is presumed that carbon content is contained in the cement itself and is different from the detection of chloride and sulfate specimen. Therefore, it is considered that more various parameter studies should be performed to apply LIBS to concrete carbonation.

Evaluation of Thermal and Shrinkage Stresses in Hardening Concrete Considering Early-Age Creep Effect (초기재령 콘크리트의 크리프를 고려한 온도 및 수축응력 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.382-391
    • /
    • 2002
  • This study is devoted to the problems of thermal and shrinkage stresses in order to avoid cracking at early ages. The early-age damage induced by volume change has great influence on the long-term structural performance of the concrete structures such as its durability and serviceability To solve this complex problem, the computer programs for analysis of thermal and shrinkage stresses were developed. In these procedures, numerous material models are needed and the realistic numerical models have been developed and validated by comparison with relevant experimental results in order to solve practical problems. A framework has been established for formulation of material models and analysis with 3-D finite element method. After the analysis of the temperature, moisture and degree of hydration field in hardening concrete structure, the stress development is determined by incremental structural formulation derived from the principle of virtual work. In this study, the stress development is related to thermal and shrinkage deformation, and resulting stress relaxation due to the effect of early-age creep. From the experimental and numerical results it is found that the early-age creep p)ays important role in evaluating the accurate stress state. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and shrinkage stresses and to find measures for avoiding detrimental cracking of concrete structures at early ages.

A Study on the Variation of Strength and Color According to Heated Temperatures of Fire­Damaged Concrete (화재피해 콘크리트의 수열온도에 따른 강도 및 색상 변화 연구)

  • Choi, Kwang-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • In the safety diagnosis of fire-damaged concrete structures, it is difficult to evaluate the strength and changes in materials due to high temperatures with the existing durability analysis method. In particular, the compressive strength of specimen with different damage levels by thickness is used as a representative value for reducing the compressive strength of the structural member. In this study, a heating experiment was performed with only top face heating and fully heating conditions at 400℃ to 800℃. After heating, splitting tensile test and color analysis were performed to sliced specimens with a thickness of 20mm accompanied by the compressive test of a fully heated specimen. As a result of the experiment, the compressive strength reduction rate calculated from the splitting tensile strength of every sliced specimen appeared to be within 10% of the fully heated specimen on aver age, and the hue value analysis showed consistent color values were observed by red at 400℃-600℃ and gray at 700℃ or above. It follows that the techniques proposed in this study are reasonably assessable to estimate heated temperature and residual compressive strength and damage depth of concrete.